IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v234y2021ics036054422101402x.html
   My bibliography  Save this article

Enhancement of heat transfer in SAH with polygonal and trapezoidal shape of the rib using CFD

Author

Listed:
  • Varun Kumar, B.
  • Manikandan, G.
  • Rajesh Kanna, P.

Abstract

A numerical investigation was carried out in Solar Air Heater (SAH) by implementing an artificial rough absorber plate for higher thermal performances. A polygonal transfer rib, the forward and backward trapezoidal rough ribs were nominated for simulation analysis using ANSYS, Fluent version 13.0. The Renormalization k-ε model was selected to predict the augmentation of Nusselt number (Nu), friction factor (ƒ) characterization and Thermo Hydraulic Performances (THP) for a proposed rib by varying relative roughness pitch P/e = [3.33–20] and relative roughness height e/D = [0.03–0.09]. Dittus Boelter and Blasius correlation were used for validating the smooth surface of Nu and ƒ besides compared with the rough surface to ascertain augmentation of heat transfer. The investigation reported on the performance of Nu and ƒ of the proposed rib at a Reynolds number ranges from 3800 to 18,000. The result reveals that the polygonal rib shape with relative roughness pitch P/e = 3.33 has produced higher Nu and gradual reduction of ƒ at Reynolds number 18000. It was found that THP has achieved a maximum of 1.89 in P/e = 10 & e/D = 0.06 at Reynolds number 15000 in the backward trapezoidal rib.

Suggested Citation

  • Varun Kumar, B. & Manikandan, G. & Rajesh Kanna, P., 2021. "Enhancement of heat transfer in SAH with polygonal and trapezoidal shape of the rib using CFD," Energy, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:energy:v:234:y:2021:i:c:s036054422101402x
    DOI: 10.1016/j.energy.2021.121154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422101402X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alam, Tabish & Kim, Man-Hoe, 2016. "Numerical study on thermal hydraulic performance improvement in solar air heater duct with semi ellipse shaped obstacles," Energy, Elsevier, vol. 112(C), pages 588-598.
    2. Singh, Sukhmeet & Chander, Subhash & Saini, J.S., 2012. "Investigations on thermo-hydraulic performance due to flow-attack-angle in V-down rib with gap in a rectangular duct of solar air heater," Applied Energy, Elsevier, vol. 97(C), pages 907-912.
    3. Ravi, Ravi Kant & Saini, R.P., 2016. "Experimental investigation on performance of a double pass artificial roughened solar air heater duct having roughness elements of the combination of discrete multi V shaped and staggered ribs," Energy, Elsevier, vol. 116(P1), pages 507-516.
    4. Verma, S.K & Prasad, B.N, 2000. "Investigation for the optimal thermohydraulic performance of artificially roughened solar air heaters," Renewable Energy, Elsevier, vol. 20(1), pages 19-36.
    5. Lanjewar, Atul & Bhagoria, J.L. & Sarviya, R.M., 2011. "Heat transfer and friction in solar air heater duct with W-shaped rib roughness on absorber plate," Energy, Elsevier, vol. 36(7), pages 4531-4541.
    6. Kumar, Sharad & Saini, R.P., 2009. "CFD based performance analysis of a solar air heater duct provided with artificial roughness," Renewable Energy, Elsevier, vol. 34(5), pages 1285-1291.
    7. Arunkumar, H.S. & Kumar, Shiva & Karanth, K. Vasudeva, 2020. "Analysis of a solar air heater for augmented thermohydraulic performance using helicoidal spring shaped fins-A numerical study," Renewable Energy, Elsevier, vol. 160(C), pages 297-311.
    8. Singh, Sukhmeet & Singh, Bikramjit & Hans, V.S. & Gill, R.S., 2015. "CFD (computational fluid dynamics) investigation on Nusselt number and friction factor of solar air heater duct roughened with non-uniform cross-section transverse rib," Energy, Elsevier, vol. 84(C), pages 509-517.
    9. Menasria, Fouad & Zedairia, Merouane & Moummi, Abdelhafid, 2017. "Numerical study of thermohydraulic performance of solar air heater duct equipped with novel continuous rectangular baffles with high aspect ratio," Energy, Elsevier, vol. 133(C), pages 593-608.
    10. Tanda, Giovanni, 2011. "Performance of solar air heater ducts with different types of ribs on the absorber plate," Energy, Elsevier, vol. 36(11), pages 6651-6660.
    11. Wang, Teng-yue & Zhao, Yao-hua & Diao, Yan-hua & Ren, Ru-yang & Wang, Ze-yu, 2019. "Performance of a new type of solar air collector with transparent-vacuum glass tube based on micro-heat pipe arrays," Energy, Elsevier, vol. 177(C), pages 16-28.
    12. Karwa, Rajendra & Solanki, S.C & Saini, J.S, 2001. "Thermo-hydraulic performance of solar air heaters having integral chamfered rib roughness on absorber plates," Energy, Elsevier, vol. 26(2), pages 161-176.
    13. Saini, R.P. & Verma, Jitendra, 2008. "Heat transfer and friction factor correlations for a duct having dimple-shape artificial roughness for solar air heaters," Energy, Elsevier, vol. 33(8), pages 1277-1287.
    14. Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
    15. Yadav, Anil Singh & Bhagoria, J.L., 2013. "A CFD (computational fluid dynamics) based heat transfer and fluid flow analysis of a solar air heater provided with circular transverse wire rib roughness on the absorber plate," Energy, Elsevier, vol. 55(C), pages 1127-1142.
    16. Kumar, Rajneesh & Goel, Varun & Kumar, Anoop, 2018. "Investigation of heat transfer augmentation and friction factor in triangular duct solar air heater due to forward facing chamfered rectangular ribs: A CFD based analysis," Renewable Energy, Elsevier, vol. 115(C), pages 824-835.
    17. Varun Kumar B. & G. Manikandan & P. Rajesh Kanna & Dawid Taler & Jan Taler & Marzena Nowak-Ocłoń & Karol Mzyk & Hoong Thiam Toh, 2018. "A Performance Evaluation of a Solar Air Heater Using Different Shaped Ribs Mounted on the Absorber Plate—A Review," Energies, MDPI, vol. 11(11), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. B. Varun Kumar & P. Rajesh Kanna & G. Manikandan & Dawid Taler & Jan Taler & Tomasz Sobota & Marzena Nowak-Ocłoń, 2023. "Investigation of Thermo-Hydraulic Performances of Artificial Ribs Mounted in a Rectangular Duct," Energies, MDPI, vol. 16(11), pages 1-21, May.
    2. Zhang, Pu & Xia, Peng & Guo, Xueyan & Xie, Shaozhang & Ma, Wensheng, 2022. "A CFD-adjoint reverse design of transverse rib profile for enhancing thermo-hydraulic performance in the solar air heater," Renewable Energy, Elsevier, vol. 198(C), pages 587-601.
    3. Karmveer & Naveen Kumar Gupta & Tabish Alam & Raffaello Cozzolino & Gino Bella, 2022. "A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater," Energies, MDPI, vol. 15(8), pages 1-46, April.
    4. Anil Singh Yadav & Tabish Alam & Gaurav Gupta & Rajiv Saxena & Naveen Kumar Gupta & K. Viswanath Allamraju & Rahul Kumar & Neeraj Sharma & Abhishek Sharma & Utkarsh Pandey & Yogesh Agrawal, 2022. "A Numerical Investigation of an Artificially Roughened Solar Air Heater," Energies, MDPI, vol. 15(21), pages 1-27, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh Yadav, Anil & Kumar Thapak, Manish, 2014. "Artificially roughened solar air heater: Experimental investigations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 370-411.
    2. Varun Kumar B. & G. Manikandan & P. Rajesh Kanna & Dawid Taler & Jan Taler & Marzena Nowak-Ocłoń & Karol Mzyk & Hoong Thiam Toh, 2018. "A Performance Evaluation of a Solar Air Heater Using Different Shaped Ribs Mounted on the Absorber Plate—A Review," Energies, MDPI, vol. 11(11), pages 1-20, November.
    3. Karmveer & Naveen Kumar Gupta & Tabish Alam & Raffaello Cozzolino & Gino Bella, 2022. "A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater," Energies, MDPI, vol. 15(8), pages 1-46, April.
    4. Al-Zahrani, Salman, 2023. "Thermal performance augmentation of solar air heater with curved path," Energy, Elsevier, vol. 284(C).
    5. Yadav, Anil Singh & Bhagoria, J.L., 2013. "A CFD (computational fluid dynamics) based heat transfer and fluid flow analysis of a solar air heater provided with circular transverse wire rib roughness on the absorber plate," Energy, Elsevier, vol. 55(C), pages 1127-1142.
    6. Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
    7. Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Kumar, Sachin, 2021. "Critical review of ribbed solar air heater and performance evaluation of various V-rib configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    8. Prasad, Jay Shankar & Datta, Aparesh & Mondal, Sirshendu, 2024. "Flow and thermal behavior of solar air heater with grooved roughness," Renewable Energy, Elsevier, vol. 220(C).
    9. Hwi-Ung Choi & Kwang-Hwan Choi, 2020. "CFD Analysis on the Heat Transfer and Fluid Flow of Solar Air Heater having Transverse Triangular Block at the Bottom of Air Duct," Energies, MDPI, vol. 13(5), pages 1-19, March.
    10. Alam, Tabish & Kim, Man-Hoe, 2017. "A critical review on artificial roughness provided in rectangular solar air heater duct," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 387-400.
    11. Singh, Amritpal & Singh, Sukhmeet, 2017. "CFD investigation on roughness pitch variation in non-uniform cross-section transverse rib roughness on Nusselt number and friction factor characteristics of solar air heater duct," Energy, Elsevier, vol. 128(C), pages 109-127.
    12. Kumar, Anil & Kim, Man-Hoe, 2016. "Thermohydraulic performance of rectangular ducts with different multiple V-rib roughness shapes: A comprehensive review and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 635-652.
    13. Gawande, Vipin B. & Dhoble, A.S. & Zodpe, D.B., 2014. "Effect of roughness geometries on heat transfer enhancement in solar thermal systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 347-378.
    14. Sharma, Sanjay K. & Kalamkar, Vilas R., 2015. "Thermo-hydraulic performance analysis of solar air heaters having artificial roughness–A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 413-435.
    15. Azadani, Leila N. & Gharouni, Nadiya, 2021. "Multi objective optimization of cylindrical shape roughness parameters in a solar air heater," Renewable Energy, Elsevier, vol. 179(C), pages 1156-1168.
    16. Saxena, Abhishek & Varun, & El-Sebaii, A.A., 2015. "A thermodynamic review of solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 863-890.
    17. Anil Singh Yadav & Tabish Alam & Gaurav Gupta & Rajiv Saxena & Naveen Kumar Gupta & K. Viswanath Allamraju & Rahul Kumar & Neeraj Sharma & Abhishek Sharma & Utkarsh Pandey & Yogesh Agrawal, 2022. "A Numerical Investigation of an Artificially Roughened Solar Air Heater," Energies, MDPI, vol. 15(21), pages 1-27, October.
    18. Sahu, Mukesh Kumar & Prasad, Radha Krishna, 2017. "Thermohydraulic performance analysis of an arc shape wire roughened solar air heater," Renewable Energy, Elsevier, vol. 108(C), pages 598-614.
    19. Bensaci, Charaf-Eddine & Moummi, Abdelhafid & Sanchez de la Flor, Francisco J. & Rodriguez Jara, Enrique A. & Rincon-Casado, Alejandro & Ruiz-Pardo, Alvaro, 2020. "Numerical and experimental study of the heat transfer and hydraulic performance of solar air heaters with different baffle positions," Renewable Energy, Elsevier, vol. 155(C), pages 1231-1244.
    20. Salman, Mohammad & Chauhan, Ranchan & Poongavanam, Ganesh Kumar & Kim, Sung Chul, 2022. "Analytical investigation of jet impingement solar air heater with dimple-roughened absorber surface via thermal and effective analysis," Renewable Energy, Elsevier, vol. 199(C), pages 1248-1257.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:234:y:2021:i:c:s036054422101402x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.