IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v160y2020icp297-311.html
   My bibliography  Save this article

Analysis of a solar air heater for augmented thermohydraulic performance using helicoidal spring shaped fins-A numerical study

Author

Listed:
  • Arunkumar, H.S.
  • Kumar, Shiva
  • Karanth, K. Vasudeva

Abstract

This study presents the performance analysis of solar air heater in which spring shaped fins introduced beneath the absorber plate are investigated. Effects of spring fin wire diameter ratio, spring diameter ratio and helicoidal pitch ratio on the thermal performance for varying flow rates are analyzed. The results for thermo-hydraulic enhancement factor are studied and it is found that the spring fin produces greater turbulence inside the absorber duct while causing lesser resistance to flow. For varying helicoidal pitch ratio of spring fin, the Thermo-hydraulic enhancement factor and Nusselt number are found to be optimally high for a helicoidal pitch ratio of 0.133 for the entire range of Reynolds numbers. The Nusselt number rises with increase in spring wire diameter ratio. However, the thermo-hydraulic enhancement factor rises with increase in spring wire diameter ratio up to 0.093 and then drops due to higher flow resistance. The Nusselt number drops with increase in helicoidal spring diameter ratio. The thermo-hydraulic enhancement factor is substantially higher at 1.268 for helicoidal spring diameter ratio of 0.06 at lower Reynolds numbers. Correlations are developed for the spring geometric parameters in terms of Nusselt number and friction factor with a deviation of ±10% in terms of parity.

Suggested Citation

  • Arunkumar, H.S. & Kumar, Shiva & Karanth, K. Vasudeva, 2020. "Analysis of a solar air heater for augmented thermohydraulic performance using helicoidal spring shaped fins-A numerical study," Renewable Energy, Elsevier, vol. 160(C), pages 297-311.
  • Handle: RePEc:eee:renene:v:160:y:2020:i:c:p:297-311
    DOI: 10.1016/j.renene.2020.06.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120310156
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.06.098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Vikash, 2019. "Nusselt number and friction factor correlations of three sides concave dimple roughened solar air heater," Renewable Energy, Elsevier, vol. 135(C), pages 355-377.
    2. Gao, Wenfeng & Lin, Wenxian & Liu, Tao & Xia, Chaofeng, 2007. "Analytical and experimental studies on the thermal performance of cross-corrugated and flat-plate solar air heaters," Applied Energy, Elsevier, vol. 84(4), pages 425-441, April.
    3. Rajaseenivasan, T. & Srinivasan, S. & Srithar, K., 2015. "Comprehensive study on solar air heater with circular and V-type turbulators attached on absorber plate," Energy, Elsevier, vol. 88(C), pages 863-873.
    4. Manjunath, M.S. & Karanth, K.Vasudeva & Sharma, N.Yagnesh, 2017. "Numerical analysis of the influence of spherical turbulence generators on heat transfer enhancement of flat plate solar air heater," Energy, Elsevier, vol. 121(C), pages 616-630.
    5. Thakur, Deep Singh & Khan, Mohd. Kaleem & Pathak, Manabendra, 2017. "Solar air heater with hyperbolic ribs: 3D simulation with experimental validation," Renewable Energy, Elsevier, vol. 113(C), pages 357-368.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prasad, Jay Shankar & Datta, Aparesh & Mondal, Sirshendu, 2024. "Flow and thermal behavior of solar air heater with grooved roughness," Renewable Energy, Elsevier, vol. 220(C).
    2. Varun Kumar, B. & Manikandan, G. & Rajesh Kanna, P., 2021. "Enhancement of heat transfer in SAH with polygonal and trapezoidal shape of the rib using CFD," Energy, Elsevier, vol. 234(C).
    3. Sheikhnejad, Yahya & Gandjalikhan Nassab, Seyed Abdolreza, 2021. "Enhancement of solar chimney performance by passive vortex generator," Renewable Energy, Elsevier, vol. 169(C), pages 437-450.
    4. Kumar, Amit & Akshayveer, & Singh, Ajeet Pratap & Singh, O.P., 2022. "Investigations for efficient design of a new counter flow double-pass curved solar air heater," Renewable Energy, Elsevier, vol. 185(C), pages 759-770.
    5. Ravanji, Abdolvahab & Lee, Ann & Mohammadpour, Javad & Cheng, Shaokoon, 2023. "Critical review on thermohydraulic performance enhancement in channel flows: A comparative study of pin fins," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Aziz, Mohamed A. & Elsayed, Ahmed M., 2022. "Thermofluid effects of solar chimney geometry on performance parameters," Renewable Energy, Elsevier, vol. 200(C), pages 674-693.
    7. Cao, Yan & Hashemian, Mehran & Ayed, Hamdi & Shawabkeh, Ali & Issakhov, Alibek & Wae-hayee, Makatar, 2022. "Design-eligibility study of solar thermal helically coiled heat exchanging system with annular dimples by irreversibility concept," Renewable Energy, Elsevier, vol. 183(C), pages 369-384.
    8. Azadani, Leila N. & Gharouni, Nadiya, 2021. "Multi objective optimization of cylindrical shape roughness parameters in a solar air heater," Renewable Energy, Elsevier, vol. 179(C), pages 1156-1168.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Al-Zahrani, Salman, 2023. "Thermal performance augmentation of solar air heater with curved path," Energy, Elsevier, vol. 284(C).
    3. Varun Pratap Singh & Siddharth Jain & Ashish Karn & Ashwani Kumar & Gaurav Dwivedi & Chandan Swaroop Meena & Nitesh Dutt & Aritra Ghosh, 2022. "Recent Developments and Advancements in Solar Air Heaters: A Detailed Review," Sustainability, MDPI, vol. 14(19), pages 1-55, September.
    4. Mgbemene, Chigbo & Jacobs, Ifeanyi & Okoani, Anthony & Ononiwu, Ndudim, 2022. "Experimental investigation on the performance of aluminium soda can solar air heater," Renewable Energy, Elsevier, vol. 195(C), pages 182-193.
    5. Chauhan, Ranchan & Kim, Sung Chul, 2019. "Effective efficiency distribution characteristics in protruded/dimpled-arc plate solar thermal collector," Renewable Energy, Elsevier, vol. 138(C), pages 955-963.
    6. Chii-Dong Ho & Hsuan Chang & Ching-Fang Hsiao & Chien-Chang Huang, 2018. "Device Performance Improvement of Recycling Double-Pass Cross-Corrugated Solar Air Collectors," Energies, MDPI, vol. 11(2), pages 1-18, February.
    7. Sheikholeslami, M. & Ganji, D.D., 2016. "Heat transfer enhancement in an air to water heat exchanger with discontinuous helical turbulators; experimental and numerical studies," Energy, Elsevier, vol. 116(P1), pages 341-352.
    8. Hosseinkhani, A. & Gandjalikhan Nassab, S.A., 2024. "Study of gas radiation effect on the performance of single-pass solar heaters with an air gap," Energy, Elsevier, vol. 294(C).
    9. Kumar, Amit & Singh, Ajeet Pratap & Akshayveer, & Singh, O.P., 2022. "Performance characteristics of a new curved double-pass counter flow solar air heater," Energy, Elsevier, vol. 239(PA).
    10. Kumar, Vikash, 2021. "Experimental investigation of exergetic efficiency of 3 side concave dimple roughened absorbers," Energy, Elsevier, vol. 215(PB).
    11. Akpinar, Ebru Kavak & Koçyigit, Fatih, 2010. "Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates," Applied Energy, Elsevier, vol. 87(11), pages 3438-3450, November.
    12. Mohammadi, K. & Sabzpooshani, M., 2013. "Comprehensive performance evaluation and parametric studies of single pass solar air heater with fins and baffles attached over the absorber plate," Energy, Elsevier, vol. 57(C), pages 741-750.
    13. Hassan, Hamdy & Abo-Elfadl, Saleh & El-Dosoky, M.F., 2020. "An experimental investigation of the performance of new design of solar air heater (tubular)," Renewable Energy, Elsevier, vol. 151(C), pages 1055-1066.
    14. Yeh, Ho-Ming & Ho, Chii-Dong, 2009. "Effect of external recycle on the performances of flat-plate solar air heaters with internal fins attached," Renewable Energy, Elsevier, vol. 34(5), pages 1340-1347.
    15. Madhwesh Nagaraj & Manu Krishna Reddy & Arun Kumar Honnesara Sheshadri & Kota Vasudeva Karanth, 2022. "Numerical Analysis of an Aerofoil Fin Integrated Double Pass Solar Air Heater for Thermal Performance Enhancement," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    16. Yang, Tingting & Athienitis, Andreas K., 2015. "Experimental investigation of a two-inlet air-based building integrated photovoltaic/thermal (BIPV/T) system," Applied Energy, Elsevier, vol. 159(C), pages 70-79.
    17. Debnath, Suman & Das, Biplab & Randive, P.R. & Pandey, K.M., 2018. "Performance analysis of solar air collector in the climatic condition of North Eastern India," Energy, Elsevier, vol. 165(PB), pages 281-298.
    18. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
    19. Varun Kumar B. & G. Manikandan & P. Rajesh Kanna & Dawid Taler & Jan Taler & Marzena Nowak-Ocłoń & Karol Mzyk & Hoong Thiam Toh, 2018. "A Performance Evaluation of a Solar Air Heater Using Different Shaped Ribs Mounted on the Absorber Plate—A Review," Energies, MDPI, vol. 11(11), pages 1-20, November.
    20. Ravanji, Abdolvahab & Lee, Ann & Mohammadpour, Javad & Cheng, Shaokoon, 2023. "Critical review on thermohydraulic performance enhancement in channel flows: A comparative study of pin fins," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:160:y:2020:i:c:p:297-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.