Numerical and experimental study of the heat transfer and hydraulic performance of solar air heaters with different baffle positions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2020.04.017
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Anil Kumar & Man-Hoe Kim, 2016. "CFD Analysis on the Thermal Hydraulic Performance of an SAH Duct with Multi V-Shape Roughened Ribs," Energies, MDPI, vol. 9(6), pages 1-23, May.
- Lanjewar, Atul & Bhagoria, J.L. & Sarviya, R.M., 2011. "Heat transfer and friction in solar air heater duct with W-shaped rib roughness on absorber plate," Energy, Elsevier, vol. 36(7), pages 4531-4541.
- Menasria, Fouad & Zedairia, Merouane & Moummi, Abdelhafid, 2017. "Numerical study of thermohydraulic performance of solar air heater duct equipped with novel continuous rectangular baffles with high aspect ratio," Energy, Elsevier, vol. 133(C), pages 593-608.
- Wentzel, Marlett & Pouris, Anastassios, 2007. "The development impact of solar cookers: A review of solar cooking impact research in South Africa," Energy Policy, Elsevier, vol. 35(3), pages 1909-1919, March.
- Cortés, A. & Piacentini, R., 1990. "Improvement of the efficiency of a bare solar collector by means of turbulence promoters," Applied Energy, Elsevier, vol. 36(4), pages 253-261.
- Jin, Dongxu & Zhang, Manman & Wang, Ping & Xu, Shasha, 2015. "Numerical investigation of heat transfer and fluid flow in a solar air heater duct with multi V-shaped ribs on the absorber plate," Energy, Elsevier, vol. 89(C), pages 178-190.
- Saini, R.P. & Verma, Jitendra, 2008. "Heat transfer and friction factor correlations for a duct having dimple-shape artificial roughness for solar air heaters," Energy, Elsevier, vol. 33(8), pages 1277-1287.
- Deo, Narinderpal Singh & Chander, Subhash & Saini, J.S., 2016. "Performance analysis of solar air heater duct roughened with multigap V-down ribs combined with staggered ribs," Renewable Energy, Elsevier, vol. 91(C), pages 484-500.
- Yadav, Anil Singh & Bhagoria, J.L., 2013. "A CFD (computational fluid dynamics) based heat transfer and fluid flow analysis of a solar air heater provided with circular transverse wire rib roughness on the absorber plate," Energy, Elsevier, vol. 55(C), pages 1127-1142.
- Thirugnanasambandam, Mirunalini & Iniyan, S. & Goic, Ranko, 2010. "A review of solar thermal technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 312-322, January.
- Gawande, Vipin B. & Dhoble, A.S. & Zodpe, D.B. & Chamoli, Sunil, 2016. "A review of CFD methodology used in literature for predicting thermo-hydraulic performance of a roughened solar air heater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 550-605.
- Yadav, Anil Singh & Bhagoria, J.L., 2013. "Heat transfer and fluid flow analysis of solar air heater: A review of CFD approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 60-79.
- Prasad, K. & Mullick, S. C., 1983. "Heat transfer characteristics of a solar air heater used for drying purposes," Applied Energy, Elsevier, vol. 13(2), pages 83-93, February.
- Moummi, N & Youcef-Ali, S & Moummi, A & Desmons, J.Y, 2004. "Energy analysis of a solar air collector with rows of fins," Renewable Energy, Elsevier, vol. 29(13), pages 2053-2064.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chaudhri, Kapil & Bhagoria, J.L. & Kumar, Vikash, 2022. "Transverse wedge-shaped rib roughened solar air heater (SAH) - Exergy based experimental investigation," Renewable Energy, Elsevier, vol. 184(C), pages 1150-1164.
- Sheikhnejad, Yahya & Gandjalikhan Nassab, Seyed Abdolreza, 2021. "Enhancement of solar chimney performance by passive vortex generator," Renewable Energy, Elsevier, vol. 169(C), pages 437-450.
- Ji-Suk Yu & Jin-Hee Kim & Jun-Tae Kim, 2020. "Effect of Triangular Baffle Arrangement on Heat Transfer Enhancement of Air-Type PVT Collector," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
- Ghizlene Boussouar & Brahim Rostane & Khaled Aliane & Dineshkumar Ravi & Michał Jan Gęca & Arkadiusz Gola, 2024. "Study of the Thermal Performance of Solar Air Collectors with and without Perforated Baffles," Energies, MDPI, vol. 17(15), pages 1-20, August.
- Tandel, Hiren U. & Modi, Kalpesh V., 2022. "Experimental assessment of double-pass solar air heater by incorporating perforated baffles and solar water heating system," Renewable Energy, Elsevier, vol. 183(C), pages 385-405.
- Hassan, Ahmad Kamal & Muzaffarul Hasan, M. & Emran Khan, Mohammad, 2021. "Parametric investigation and correlation development for heat transfer and friction factor in multiple arc dimple roughened solar air duct," Renewable Energy, Elsevier, vol. 174(C), pages 403-425.
- Mir Waqas Alam & Basma Souayeh, 2021. "Parametric CFD Thermal Performance Analysis of Full, Medium, Half and Short Length Dimple Solar Air Tube," Sustainability, MDPI, vol. 13(11), pages 1-30, June.
- Ali Hassan & Ali M. Nikbakht & Sabrina Fawzia & Prasad Yarlagadda & Azharul Karim, 2024. "A Comprehensive Review of the Thermohydraulic Improvement Potentials in Solar Air Heaters through an Energy and Exergy Analysis," Energies, MDPI, vol. 17(7), pages 1-43, March.
- Hosseinkhani, A. & Gandjalikhan Nassab, S.A., 2024. "Study of gas radiation effect on the performance of single-pass solar heaters with an air gap," Energy, Elsevier, vol. 294(C).
- Khanlari, Ataollah & Sözen, Adnan & Afshari, Faraz & Tuncer, Azim Doğuş, 2021. "Energy-exergy and sustainability analysis of a PV-driven quadruple-flow solar drying system," Renewable Energy, Elsevier, vol. 175(C), pages 1151-1166.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kumar, Anil & Kim, Man-Hoe, 2016. "Thermohydraulic performance of rectangular ducts with different multiple V-rib roughness shapes: A comprehensive review and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 635-652.
- Karmveer & Naveen Kumar Gupta & Tabish Alam & Raffaello Cozzolino & Gino Bella, 2022. "A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater," Energies, MDPI, vol. 15(8), pages 1-46, April.
- Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
- Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Kumar, Sachin, 2021. "Critical review of ribbed solar air heater and performance evaluation of various V-rib configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
- Singh Yadav, Anil & Kumar Thapak, Manish, 2014. "Artificially roughened solar air heater: Experimental investigations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 370-411.
- Hwi-Ung Choi & Kwang-Hwan Choi, 2020. "CFD Analysis on the Heat Transfer and Fluid Flow of Solar Air Heater having Transverse Triangular Block at the Bottom of Air Duct," Energies, MDPI, vol. 13(5), pages 1-19, March.
- Manjunath, M.S. & Karanth, K.Vasudeva & Sharma, N.Yagnesh, 2017. "Numerical analysis of the influence of spherical turbulence generators on heat transfer enhancement of flat plate solar air heater," Energy, Elsevier, vol. 121(C), pages 616-630.
- Gawande, Vipin B. & Dhoble, A.S. & Zodpe, D.B., 2014. "Effect of roughness geometries on heat transfer enhancement in solar thermal systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 347-378.
- Singh, Satyender & Dhiman, Prashant, 2016. "Thermal performance of double pass packed bed solar air heaters – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1010-1031.
- Varun Kumar B. & G. Manikandan & P. Rajesh Kanna & Dawid Taler & Jan Taler & Marzena Nowak-Ocłoń & Karol Mzyk & Hoong Thiam Toh, 2018. "A Performance Evaluation of a Solar Air Heater Using Different Shaped Ribs Mounted on the Absorber Plate—A Review," Energies, MDPI, vol. 11(11), pages 1-20, November.
- Kumar, Rajneesh & Goel, Varun, 2021. "Unconventional solar air heater with triangular flow-passage: A CFD based comparative performance assessment of different cross-sectional rib-roughnesses," Renewable Energy, Elsevier, vol. 172(C), pages 1267-1278.
- Yadav, Anil Singh & Bhagoria, J.L., 2013. "A CFD (computational fluid dynamics) based heat transfer and fluid flow analysis of a solar air heater provided with circular transverse wire rib roughness on the absorber plate," Energy, Elsevier, vol. 55(C), pages 1127-1142.
- Singh, Amritpal & Singh, Sukhmeet, 2017. "CFD investigation on roughness pitch variation in non-uniform cross-section transverse rib roughness on Nusselt number and friction factor characteristics of solar air heater duct," Energy, Elsevier, vol. 128(C), pages 109-127.
- Al-Zahrani, Salman, 2023. "Thermal performance augmentation of solar air heater with curved path," Energy, Elsevier, vol. 284(C).
- Singh Bisht, Vijay & Kumar Patil, Anil & Gupta, Anirudh, 2018. "Review and performance evaluation of roughened solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 954-977.
- Varun Kumar, B. & Manikandan, G. & Rajesh Kanna, P., 2021. "Enhancement of heat transfer in SAH with polygonal and trapezoidal shape of the rib using CFD," Energy, Elsevier, vol. 234(C).
- Prasad, Jay Shankar & Datta, Aparesh & Mondal, Sirshendu, 2024. "Numerical analysis of a solar air heater with offset transverse ribs placed near the absorber plate," Renewable Energy, Elsevier, vol. 227(C).
- Varun Pratap Singh & Siddharth Jain & Ashish Karn & Ashwani Kumar & Gaurav Dwivedi & Chandan Swaroop Meena & Nitesh Dutt & Aritra Ghosh, 2022. "Recent Developments and Advancements in Solar Air Heaters: A Detailed Review," Sustainability, MDPI, vol. 14(19), pages 1-55, September.
- Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Arunachala, U.C., 2022. "Thermo-hydraulic and exergetic performance of a cost-effective solar air heater: CFD and experimental study," Renewable Energy, Elsevier, vol. 184(C), pages 627-641.
- Saxena, Abhishek & Varun, & El-Sebaii, A.A., 2015. "A thermodynamic review of solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 863-890.
More about this item
Keywords
Solar air heater; Baffles; CFD simulation; Thermo-hydraulic performance; Local convective heat transfer coefficient;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:155:y:2020:i:c:p:1231-1244. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.