Mitigating the losses in nanofluid-based direct solar absorption receivers
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2021.06.138
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mahdi Motamedi & Chia-Yang Chung & Mehdi Rafeie & Natasha Hjerrild & Fan Jiang & Haoran Qu & Robert A. Taylor, 2019. "Experimental Testing of Hydrophobic Microchannels, with and without Nanofluids, for Solar PV/T Collectors," Energies, MDPI, vol. 12(15), pages 1-15, August.
- Yeh, H.M. & Ho, C.D. & Yeh, C.W., 2003. "Effect of aspect ratio on the collector efficiency of sheet-and-tube solar water heaters with the consideration of hydraulic dissipated energy," Renewable Energy, Elsevier, vol. 28(10), pages 1575-1586.
- Goel, Nipun & Taylor, Robert A. & Otanicar, Todd, 2020. "A review of nanofluid-based direct absorption solar collectors: Design considerations and experiments with hybrid PV/Thermal and direct steam generation collectors," Renewable Energy, Elsevier, vol. 145(C), pages 903-913.
- Crisostomo, Felipe & Hjerrild, Natasha & Mesgari, Sara & Li, Qiyuan & Taylor, Robert A., 2017. "A hybrid PV/T collector using spectrally selective absorbing nanofluids," Applied Energy, Elsevier, vol. 193(C), pages 1-14.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hossain, Farzad & Karim, Md. Rezwanul & Bhuiyan, Arafat A., 2022. "A review on recent advancements of the usage of nano fluid in hybrid photovoltaic/thermal (PV/T) solar systems," Renewable Energy, Elsevier, vol. 188(C), pages 114-131.
- Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
- Han, Xinyue & Chen, Xiaobin & Sun, Yao & Qu, Jian, 2020. "Performance improvement of a PV/T system utilizing Ag/CoSO4-propylene glycol nanofluid optical filter," Energy, Elsevier, vol. 192(C).
- Figaj, Rafał & Żołądek, Maciej, 2021. "Experimental and numerical analysis of hybrid solar heating and cooling system for a residential user," Renewable Energy, Elsevier, vol. 172(C), pages 955-967.
- Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
- Zhang, Chenyu & Wang, Ning & Yang, Qiguo & Xu, Hongtao & Qu, Zhiguo & Fang, Yuan, 2022. "Energy and exergy analysis of a switchable solar photovoltaic/thermal-phase change material system with thermal regulation strategies," Renewable Energy, Elsevier, vol. 196(C), pages 1392-1405.
- Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
- Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2017. "Investigation of the use of nano-refrigerants to enhance the performance of an ejector refrigeration system," Applied Energy, Elsevier, vol. 206(C), pages 1446-1463.
- Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
- Moss, R.W. & Henshall, P. & Arya, F. & Shire, G.S.F. & Hyde, T. & Eames, P.C., 2018. "Performance and operational effectiveness of evacuated flat plate solar collectors compared with conventional thermal, PVT and PV panels," Applied Energy, Elsevier, vol. 216(C), pages 588-601.
- Brekke, Nick & Dale, John & DeJarnette, Drew & Hari, Parameswar & Orosz, Matthew & Roberts, Kenneth & Tunkara, Ebrima & Otanicar, Todd, 2018. "Detailed performance model of a hybrid photovoltaic/thermal system utilizing selective spectral nanofluid absorption," Renewable Energy, Elsevier, vol. 123(C), pages 683-693.
- Wang, Kai & Pantaleo, Antonio M. & Herrando, María & Faccia, Michele & Pesmazoglou, Ioannis & Franchetti, Benjamin M. & Markides, Christos N., 2020. "Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms," Renewable Energy, Elsevier, vol. 159(C), pages 1047-1065.
- Abdelrazik, A.S. & Saidur, R. & Al-Sulaiman, F.A., 2021. "Investigation of the performance of a hybrid PV/thermal system using water/silver nanofluid-based optical filter," Energy, Elsevier, vol. 215(PB).
- Karolina Papis-Frączek & Krzysztof Sornek, 2022. "A Review on Heat Extraction Devices for CPVT Systems with Active Liquid Cooling," Energies, MDPI, vol. 15(17), pages 1-49, August.
- Alois Resch & Robert Höller, 2021. "Electrical Efficiency Increase in CPVT Collectors by Spectral Splitting," Energies, MDPI, vol. 14(23), pages 1-18, December.
- Otanicar, Todd & Dale, John & Orosz, Matthew & Brekke, Nick & DeJarnette, Drew & Tunkara, Ebrima & Roberts, Kenneth & Harikumar, Parameswar, 2018. "Experimental evaluation of a prototype hybrid CPV/T system utilizing a nanoparticle fluid absorber at elevated temperatures," Applied Energy, Elsevier, vol. 228(C), pages 1531-1539.
- Jilani, G. & Thomas, Ciby, 2014. "Effect of thermo-geometric parameters on entropy generation in absorber plate fin of a solar flat plate collector," Energy, Elsevier, vol. 70(C), pages 35-42.
- Chen, Xingyu & Chen, Meijie & Zhou, Ping, 2022. "Solar-thermal conversion performance of heterogeneous nanofluids," Renewable Energy, Elsevier, vol. 198(C), pages 1307-1317.
More about this item
Keywords
Solar thermal; Nanofluid; Efficiency; Pumping power; Optical loss;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:178:y:2021:i:c:p:1174-1186. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.