IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v210y2023icp386-396.html
   My bibliography  Save this article

Nanopatterned indium tin oxide as a selective coating for solar thermal applications

Author

Listed:
  • Motamedi, Mahdi
  • Jia, Guobin
  • Yao, Yin
  • Shanks, Katie
  • Yousefi, Peyman
  • Hewakuruppu, Yasitha L.
  • Rafeie, Mehdi
  • Lindner, Florian
  • Patterson, Robert
  • Christiansen, Silke
  • Plentz, Jonathan
  • Koshy, Pramod
  • Taylor, Robert A.

Abstract

Indium tin oxide (ITO) coatings have been proposed to reduce thermal emission losses for solar thermal applications. Unfortunately, ITO also has a large amount of free charge carriers (∼1 × 1020 per cm3), which absorb sunlight. To address this issue, we propose a nano-patterned ITO-coated quartz exhibiting both anti-reflectivity (to maximize solar transmission) and low emissivity (to minimize long wavelengths radiative losses). A record small-size nanosphere (∼60 nm) etch mask was prepared via double self-assembly, followed by dry etching and characterisation. In parallel, alternative nanopattern geometries were modelled using the Lumerical FDTD software to optimise short wavelength transmission without diminishing the inherently low emissivity of unetched ITO. It was found that an inverted moth's eye pattern (height = 250 nm and spacing = 80 nm) gave the best results at various solar concentrations (1 sun @ 100 °C, 10 suns @ 400 °C, and 100 suns @ 600 °C), resulting in ∼7% improvement in the solar weighted transmission as well as a similar boost in the overall efficiency factor for selectivity. It was concluded that if the proposed deposition/etching processes can be cost-effectively scaled in a continuous process, it would provide a net performance boost for most solar thermal technologies.

Suggested Citation

  • Motamedi, Mahdi & Jia, Guobin & Yao, Yin & Shanks, Katie & Yousefi, Peyman & Hewakuruppu, Yasitha L. & Rafeie, Mehdi & Lindner, Florian & Patterson, Robert & Christiansen, Silke & Plentz, Jonathan & K, 2023. "Nanopatterned indium tin oxide as a selective coating for solar thermal applications," Renewable Energy, Elsevier, vol. 210(C), pages 386-396.
  • Handle: RePEc:eee:renene:v:210:y:2023:i:c:p:386-396
    DOI: 10.1016/j.renene.2023.04.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123004706
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.04.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahdi Motamedi & Chia-Yang Chung & Mehdi Rafeie & Natasha Hjerrild & Fan Jiang & Haoran Qu & Robert A. Taylor, 2019. "Experimental Testing of Hydrophobic Microchannels, with and without Nanofluids, for Solar PV/T Collectors," Energies, MDPI, vol. 12(15), pages 1-15, August.
    2. Wang, Qiliang & Hu, Mingke & Yang, Honglun & Cao, Jingyu & Li, Jing & Su, Yuehong & Pei, Gang, 2019. "Performance evaluation and analyses of novel parabolic trough evacuated collector tubes with spectrum-selective glass envelope," Renewable Energy, Elsevier, vol. 138(C), pages 793-804.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
    2. Qiu, Yu & Xu, Yucong & Li, Qing & Wang, Jikang & Wang, Qiliang & Liu, Bin, 2021. "Efficiency enhancement of a solar trough collector by combining solar and hot mirrors," Applied Energy, Elsevier, vol. 299(C).
    3. Hossain, Farzad & Karim, Md. Rezwanul & Bhuiyan, Arafat A., 2022. "A review on recent advancements of the usage of nano fluid in hybrid photovoltaic/thermal (PV/T) solar systems," Renewable Energy, Elsevier, vol. 188(C), pages 114-131.
    4. Madadi Avargani, Vahid & Norton, Brian & Rahimi, Amir, 2021. "An open-aperture partially-evacuated receiver for more uniform reflected solar flux in circular-trough reflectors: Comparative performance in air heating applications," Renewable Energy, Elsevier, vol. 176(C), pages 11-24.
    5. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Alamdari, Pedram & Khatamifar, Mehdi & Lin, Wenxian, 2024. "Heat loss analysis review: Parabolic trough and linear Fresnel collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    7. Hu, Tianxiang & Kwan, Trevor Hocksun & Zhang, Han & Wang, Qiliang & Pei, Gang, 2023. "Thermal performance investigation of the newly shaped vacuum tubes of parabolic trough collector system," Energy, Elsevier, vol. 278(C).
    8. Karolina Papis-Frączek & Krzysztof Sornek, 2022. "A Review on Heat Extraction Devices for CPVT Systems with Active Liquid Cooling," Energies, MDPI, vol. 15(17), pages 1-49, August.
    9. Wang, Qiliang & Li, Guiqiang & Cao, Jingyu & Hu, Mingke & Pei, Gang & Yang, Hongxing, 2022. "An analytical study on optimal spectral characters of solar absorbing coating and thermal performance potential of solar power tower," Renewable Energy, Elsevier, vol. 200(C), pages 1300-1315.
    10. Qiu, Yu & Zhang, Yuanting & Li, Qing & Xu, Yucong & Wen, Zhe-Xi, 2020. "A novel parabolic trough receiver enhanced by integrating a transparent aerogel and wing-like mirrors," Applied Energy, Elsevier, vol. 279(C).
    11. Wang, Qiliang & Pei, Gang & Yang, Hongxing, 2021. "Techno-economic assessment of performance-enhanced parabolic trough receiver in concentrated solar power plants," Renewable Energy, Elsevier, vol. 167(C), pages 629-643.
    12. Shinde, Tukaram U. & Dalvi, Vishwanath H. & Patil, Ramchandra G. & Mathpati, Channamallikarjun S. & Panse, Sudhir V. & Joshi, Jyeshtharaj B., 2022. "Thermal performance analysis of novel receiver for parabolic trough solar collector," Energy, Elsevier, vol. 254(PA).
    13. Wang, Qiliang & Yang, Honglun & Zhong, Shuai & Huang, Yihang & Hu, Mingke & Cao, Jingyu & Pei, Gang & Yang, Hongxing, 2020. "Comprehensive experimental testing and analysis on parabolic trough solar receiver integrated with radiation shield," Applied Energy, Elsevier, vol. 268(C).
    14. Zhao, Kai & Jin, Hongguang & Gai, Zhongrui & Hong, Hui, 2022. "A thermal efficiency-enhancing strategy of parabolic trough collector systems by cascadingly applying multiple solar selective-absorbing coatings," Applied Energy, Elsevier, vol. 309(C).
    15. Georgios E. Arnaoutakis & Dimitris Al. Katsaprakakis, 2021. "Concentrating Solar Power Advances in Geometric Optics, Materials and System Integration," Energies, MDPI, vol. 14(19), pages 1-25, September.
    16. Godini, Ali & Kheradmand, Saeid, 2021. "Optimization of volumetric solar receiver geometry and porous media specifications," Renewable Energy, Elsevier, vol. 172(C), pages 574-581.
    17. Ignacio Arias & Eduardo Zarza & Loreto Valenzuela & Manuel Pérez-García & José Alfonso Romero Ramos & Rodrigo Escobar, 2021. "Modeling and Hourly Time-Scale Characterization of the Main Energy Parameters of Parabolic-Trough Solar Thermal Power Plants Using a Simplified Quasi-Dynamic Model," Energies, MDPI, vol. 14(1), pages 1-27, January.
    18. Hu, Mingke & Guo, Chao & Zhao, Bin & Ao, Xianze & Suhendri, & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2021. "A parametric study on the performance characteristics of an evacuated flat-plate photovoltaic/thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 167(C), pages 884-898.
    19. Hwi-Ung Choi & Kwang-Hwan Choi, 2022. "Performance Evaluation of PVT Air Collector Coupled with a Triangular Block in Actual Climate Conditions in Korea," Energies, MDPI, vol. 15(11), pages 1-12, June.
    20. Mohammad Emamjome Kashan & Alan S. Fung & John Swift, 2021. "Integrating Novel Microchannel-Based Solar Collectors with a Water-to-Water Heat Pump for Cold-Climate Domestic Hot Water Supply, Including Related Solar Systems Comparisons," Energies, MDPI, vol. 14(13), pages 1-31, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:210:y:2023:i:c:p:386-396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.