IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v177y2021icp1102-1115.html
   My bibliography  Save this article

Enhanced heat extraction for deep borehole heat exchanger through the jet grouting method using high thermal conductivity material

Author

Listed:
  • Yu, Han
  • Xu, Tianfu
  • Yuan, Yilong
  • Gherardi, Fabrizio
  • Feng, Bo
  • Jiang, Zhenjiao
  • Hu, Zixu

Abstract

In this work, a novel enhanced deep borehole heat exchanger (EDBHE) was proposed to improve heat extraction efficiency based on the jet grouting method. By means of this technology, a soilcrete zone with high thermal conductivity was built near the wellbore. To analyze the feasibility and efficiency of this method, we firstly constructed a validated deep borehole heat exchanger (DBHE) model based on the field experimental data. Numerical simulations were carried out to investigate the 30-year production performance of EDBHE. Results demonstrated that the jet grouting method is an efficient way for improving thermal output of DBHE. It is evaluated that the average annual heat production rate over a 30-year heating period of EDBHE is 463.2 kW, which is 1.27 times as that of DBHE. Sensitivity analyses indicate that the heat production rate and outlet temperature mainly depend on the height and radius of the artificial soilcrete zone. However, thermal output is not sensitive to thermal conductivity of the soilcrete zone due to the higher thermal resistance of the geological formation. For the experimental site used in this work, the recommended height, radius, and thermal conductivity of the soilcrete are 1000 m, 1.0 m, and 50 W/m °C, respectively.

Suggested Citation

  • Yu, Han & Xu, Tianfu & Yuan, Yilong & Gherardi, Fabrizio & Feng, Bo & Jiang, Zhenjiao & Hu, Zixu, 2021. "Enhanced heat extraction for deep borehole heat exchanger through the jet grouting method using high thermal conductivity material," Renewable Energy, Elsevier, vol. 177(C), pages 1102-1115.
  • Handle: RePEc:eee:renene:v:177:y:2021:i:c:p:1102-1115
    DOI: 10.1016/j.renene.2021.06.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121009253
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.06.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rubio-Maya, C. & Ambríz Díaz, V.M. & Pastor Martínez, E. & Belman-Flores, J.M., 2015. "Cascade utilization of low and medium enthalpy geothermal resources − A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 689-716.
    2. Shi, Yu & Song, Xianzhi & Shen, Zhonghou & Wang, Gaosheng & Li, Xiaojiang & Zheng, Rui & Geng, Lidong & Li, Jiacheng & Zhang, Shikun, 2018. "Numerical investigation on heat extraction performance of a CO2 enhanced geothermal system with multilateral wells," Energy, Elsevier, vol. 163(C), pages 38-51.
    3. Song, Xianzhi & Wang, Gaosheng & Shi, Yu & Li, Ruixia & Xu, Zhengming & Zheng, Rui & Wang, Yu & Li, Jiacheng, 2018. "Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system," Energy, Elsevier, vol. 164(C), pages 1298-1310.
    4. Xu, Tianfu & Yuan, Yilong & Jia, Xiaofeng & Lei, Yude & Li, Shengtao & Feng, Bo & Hou, Zhaoyun & Jiang, Zhenjiao, 2018. "Prospects of power generation from an enhanced geothermal system by water circulation through two horizontal wells: A case study in the Gonghe Basin, Qinghai Province, China," Energy, Elsevier, vol. 148(C), pages 196-207.
    5. Franco, Alessandro & Vaccaro, Maurizio, 2014. "Numerical simulation of geothermal reservoirs for the sustainable design of energy plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 987-1002.
    6. Cui, Guodong & Ren, Shaoran & Zhang, Liang & Ezekiel, Justin & Enechukwu, Chioma & Wang, Yi & Zhang, Rui, 2017. "Geothermal exploitation from hot dry rocks via recycling heat transmission fluid in a horizontal well," Energy, Elsevier, vol. 128(C), pages 366-377.
    7. Falcone, Gioia & Liu, Xiaolei & Okech, Roy Radido & Seyidov, Ferid & Teodoriu, Catalin, 2018. "Assessment of deep geothermal energy exploitation methods: The need for novel single-well solutions," Energy, Elsevier, vol. 160(C), pages 54-63.
    8. Song, Xianzhi & Shi, Yu & Li, Gensheng & Yang, Ruiyue & Wang, Gaosheng & Zheng, Rui & Li, Jiacheng & Lyu, Zehao, 2018. "Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells," Applied Energy, Elsevier, vol. 218(C), pages 325-337.
    9. Hu, Zixu & Xu, Tianfu & Feng, Bo & Yuan, Yilong & Li, Fengyu & Feng, Guanhong & Jiang, Zhenjiao, 2020. "Thermal and fluid processes in a closed-loop geothermal system using CO2 as a working fluid," Renewable Energy, Elsevier, vol. 154(C), pages 351-367.
    10. Li, Chao & Guan, Yanling & Wang, Xing & Li, Gaopeng & Zhou, Cong & Xun, Yingjiu, 2018. "Experimental and numerical studies on heat transfer characteristics of vertical deep-buried U-bend pipe to supply heat in buildings with geothermal energy," Energy, Elsevier, vol. 142(C), pages 689-701.
    11. Hou, Jianchao & Cao, Mengchao & Liu, Pingkuo, 2018. "Development and utilization of geothermal energy in China: Current practices and future strategies," Renewable Energy, Elsevier, vol. 125(C), pages 401-412.
    12. Yang, H. & Cui, P. & Fang, Z., 2010. "Vertical-borehole ground-coupled heat pumps: A review of models and systems," Applied Energy, Elsevier, vol. 87(1), pages 16-27, January.
    13. Bu, Xianbiao & Jiang, Kunqing & Li, Huashan, 2019. "Performance of geothermal single well for intermittent heating," Energy, Elsevier, vol. 186(C).
    14. Bu, Xianbiao & Ran, Yunmin & Zhang, Dongdong, 2019. "Experimental and simulation studies of geothermal single well for building heating," Renewable Energy, Elsevier, vol. 143(C), pages 1902-1909.
    15. C, Alimonti & P, Conti & E, Soldo, 2019. "A comprehensive exergy evaluation of a deep borehole heat exchanger coupled with a ORC plant: the case study of Campi Flegrei," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Feng & Hao Ren & Yabin Yang & Zhenpeng Cui & Jichu Zhao, 2023. "Comparative Analysis of Heating Efficiency of a Single-Well Geothermal System in the Cold Region of Northeast China," Energies, MDPI, vol. 16(4), pages 1-16, February.
    2. Yu, Han & Xu, Tianfu & Yuan, Yilong & Feng, Bo & ShangGuan, Shuantong, 2023. "Enhanced heat extraction performance from deep buried U-shaped well using the high-pressure jet grouting technology," Renewable Energy, Elsevier, vol. 202(C), pages 1377-1386.
    3. Huang, Shuai & Li, Jiqin & Gao, Hu & Dong, Jiankai & Jiang, Yiqiang, 2024. "Thermal performance of medium-deep U-type borehole heat exchanger based on a novel numerical model considering groundwater seepage," Renewable Energy, Elsevier, vol. 222(C).
    4. Emmi, Giuseppe & Bottarelli, Michele, 2023. "Enhancement of shallow ground heat exchanger with phase change material," Renewable Energy, Elsevier, vol. 206(C), pages 828-837.
    5. Huang, Shuai & Zhu, Ke & Dong, Jiankai & Li, Ji & Kong, Weizheng & Jiang, Yiqiang & Fang, Zhaohong, 2022. "Heat transfer performance of deep borehole heat exchanger with different operation modes," Renewable Energy, Elsevier, vol. 193(C), pages 645-656.
    6. Huang, Shuai & Li, Jiqin & Zhu, Ke & Dong, Jiankai & Jiang, Yiqiang, 2024. "Numerical investigation on the long-term heating performance and sustainability analysis of medium-deep U-type borehole heat exchanger system," Energy, Elsevier, vol. 289(C).
    7. Dinh, Ba Huu & Kim, Young-Sang & Yoon, Seok, 2022. "Experimental and numerical studies on the performance of horizontal U-type and spiral-coil-type ground heat exchangers considering economic aspects," Renewable Energy, Elsevier, vol. 186(C), pages 505-516.
    8. Wang, Guoying & Ma, Hongwei & Liu, Shaowei & Yang, Dong & Xu, Xiaokai & Fu, Mengxiong & Jia, Housheng, 2022. "Thermal power extraction from a deep, closed-loop, multi-level, multi-branch, U-shaped borehole heat exchanger geothermal system," Renewable Energy, Elsevier, vol. 198(C), pages 894-906.
    9. Li, Shengtao & Wen, Dongguang & Feng, Bo & Li, Fengyu & Yue, Dongdong & Zhang, Qiuxia & Wang, Junzhao & Feng, Zhaolong, 2023. "Numerical optimization of geothermal energy extraction from deep karst reservoir in North China," Renewable Energy, Elsevier, vol. 202(C), pages 1071-1085.
    10. Zhang, Sheng & Liu, Jun & Zhang, Xia & Wang, Fenghao, 2024. "Properly shortening design time scale of medium-deep borehole heat exchanger for high building heating performances with high computational efficiency," Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Han & Xu, Tianfu & Yuan, Yilong & Feng, Bo & ShangGuan, Shuantong, 2023. "Enhanced heat extraction performance from deep buried U-shaped well using the high-pressure jet grouting technology," Renewable Energy, Elsevier, vol. 202(C), pages 1377-1386.
    2. Yujiang He & Xianbiao Bu, 2020. "Performance of Hybrid Single Well Enhanced Geothermal System and Solar Energy for Buildings Heating," Energies, MDPI, vol. 13(10), pages 1-10, May.
    3. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    4. Liu, Jun & Wang, Fenghao & Cai, Wanlong & Wang, Zhihua & Li, Chun, 2020. "Numerical investigation on the effects of geological parameters and layered subsurface on the thermal performance of medium-deep borehole heat exchanger," Renewable Energy, Elsevier, vol. 149(C), pages 384-399.
    5. Yu Wang & Tianfu Xu & Yuxiang Cheng & Guanhong Feng, 2022. "Prospects for Power Generation of the Doublet Supercritical Geothermal System in Reykjanes Geothermal Field, Iceland," Energies, MDPI, vol. 15(22), pages 1-15, November.
    6. Shi, Yu & Song, Xianzhi & Wang, Gaosheng & McLennan, John & Forbes, Bryan & Li, Xiaojiang & Li, Jiacheng, 2019. "Study on wellbore fluid flow and heat transfer of a multilateral-well CO2 enhanced geothermal system," Applied Energy, Elsevier, vol. 249(C), pages 14-27.
    7. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2021. "Retrofitting abandoned petroleum wells as doublet deep borehole heat exchangers for geothermal energy production—a numerical investigation," Renewable Energy, Elsevier, vol. 176(C), pages 115-134.
    8. Chen, Chaofan & Cai, Wanlong & Naumov, Dmitri & Tu, Kun & Zhou, Hongwei & Zhang, Yuping & Kolditz, Olaf & Shao, Haibing, 2021. "Numerical investigation on the capacity and efficiency of a deep enhanced U-tube borehole heat exchanger system for building heating," Renewable Energy, Elsevier, vol. 169(C), pages 557-572.
    9. Pokhrel, Sajjan & Sasmito, Agus P. & Sainoki, Atsushi & Tosha, Toshiyuki & Tanaka, Tatsuya & Nagai, Chiaki & Ghoreishi-Madiseh, Seyed Ali, 2022. "Field-scale experimental and numerical analysis of a downhole coaxial heat exchanger for geothermal energy production," Renewable Energy, Elsevier, vol. 182(C), pages 521-535.
    10. Soltani, M. & Moradi Kashkooli, Farshad & Souri, Mohammad & Rafiei, Behnam & Jabarifar, Mohammad & Gharali, Kobra & Nathwani, Jatin S., 2021. "Environmental, economic, and social impacts of geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    11. Bo Feng & Hao Ren & Yabin Yang & Zhenpeng Cui & Jichu Zhao, 2023. "Comparative Analysis of Heating Efficiency of a Single-Well Geothermal System in the Cold Region of Northeast China," Energies, MDPI, vol. 16(4), pages 1-16, February.
    12. Zhou, Luming & Zhu, Zhende & Xie, Xinghua & Hu, Yunjin, 2022. "Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance," Renewable Energy, Elsevier, vol. 181(C), pages 1440-1458.
    13. Wang, Guoying & Ma, Hongwei & Liu, Shaowei & Yang, Dong & Xu, Xiaokai & Fu, Mengxiong & Jia, Housheng, 2022. "Thermal power extraction from a deep, closed-loop, multi-level, multi-branch, U-shaped borehole heat exchanger geothermal system," Renewable Energy, Elsevier, vol. 198(C), pages 894-906.
    14. Li, Shijie & Liu, Jie & Huang, Wanying & Zhang, Chenghang, 2024. "Numerical simulation of the thermo-hydro-chemical coupling in enhanced geothermal systems: Impact of SiO2 dissolution/precipitation in matrix and fractures," Energy, Elsevier, vol. 290(C).
    15. Yu, Likui & Wu, Xiaotian & Hassan, N.M.S. & Wang, Yadan & Ma, Weiwu & Liu, Gang, 2020. "Modified zipper fracturing in enhanced geothermal system reservoir and heat extraction optimization via orthogonal design," Renewable Energy, Elsevier, vol. 161(C), pages 373-385.
    16. Zhang, Chao & Jiang, Guangzheng & Jia, Xiaofeng & Li, Shengtao & Zhang, Shengsheng & Hu, Di & Hu, Shengbiao & Wang, Yibo, 2019. "Parametric study of the production performance of an enhanced geothermal system: A case study at the Qiabuqia geothermal area, northeast Tibetan plateau," Renewable Energy, Elsevier, vol. 132(C), pages 959-978.
    17. Gong, Facheng & Guo, Tiankui & Sun, Wei & Li, Zhaomin & Yang, Bin & Chen, Yimei & Qu, Zhanqing, 2020. "Evaluation of geothermal energy extraction in Enhanced Geothermal System (EGS) with multiple fracturing horizontal wells (MFHW)," Renewable Energy, Elsevier, vol. 151(C), pages 1339-1351.
    18. Chen, Guodong & Luo, Xin & Jiao, Jiu Jimmy & Jiang, Chuanyin, 2023. "Fracture network characterization with deep generative model based stochastic inversion," Energy, Elsevier, vol. 273(C).
    19. Huang, Shuai & Li, Jiqin & Zhu, Ke & Dong, Jiankai & Jiang, Yiqiang, 2024. "Numerical investigation on the long-term heating performance and sustainability analysis of medium-deep U-type borehole heat exchanger system," Energy, Elsevier, vol. 289(C).
    20. Pan, Shu-Yuan & Gao, Mengyao & Shah, Kinjal J. & Zheng, Jianming & Pei, Si-Lu & Chiang, Pen-Chi, 2019. "Establishment of enhanced geothermal energy utilization plans: Barriers and strategies," Renewable Energy, Elsevier, vol. 132(C), pages 19-32.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:177:y:2021:i:c:p:1102-1115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.