IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v198y2022icp894-906.html
   My bibliography  Save this article

Thermal power extraction from a deep, closed-loop, multi-level, multi-branch, U-shaped borehole heat exchanger geothermal system

Author

Listed:
  • Wang, Guoying
  • Ma, Hongwei
  • Liu, Shaowei
  • Yang, Dong
  • Xu, Xiaokai
  • Fu, Mengxiong
  • Jia, Housheng

Abstract

A novel closed-loop, multi-level, multi-branch, U-shaped borehole heat exchanger geothermal system is proposed to achieve a more efficient method to exploit deep geothermal resources. Compared with single U-shaped closed-loop geothermal systems, the new system can reduce the drilling cost and increase the heating length. In this study, first, a three-dimensional unsteady-state flow and heat transfer model was established. Then, the temperature distribution of the working fluid in the tube and a hot dry rock reservoir was analyzed. Third, the key factors that influence heat production were analyzed. The results show that increasing the injection rate blindly does not improve the heat production power; the maximum heat production power can only be obtained by controlling the injection rate to a certain extent. The heat production power has a good linear relationship with reservoir temperature and horizontal well length. Under different reservoir temperatures, the unit power generation price of the proposed geothermal system reaches the lowest value when the horizontal well length is 3000 m and the horizontal well branches number is 4. Overall, this novel design can improve the heat exchange efficiency, reduce the power generation cost and can serve as a reference for the study of exploiting deep geothermal resources.

Suggested Citation

  • Wang, Guoying & Ma, Hongwei & Liu, Shaowei & Yang, Dong & Xu, Xiaokai & Fu, Mengxiong & Jia, Housheng, 2022. "Thermal power extraction from a deep, closed-loop, multi-level, multi-branch, U-shaped borehole heat exchanger geothermal system," Renewable Energy, Elsevier, vol. 198(C), pages 894-906.
  • Handle: RePEc:eee:renene:v:198:y:2022:i:c:p:894-906
    DOI: 10.1016/j.renene.2022.08.106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122012800
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.08.106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Gaosheng & Song, Xianzhi & Shi, Yu & Yang, Ruiyue & Yulong, Feixue & Zheng, Rui & Li, Jiacheng, 2021. "Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 974-986.
    2. Kim, Kwang-Il & Min, Ki-Bok & Kim, Kwang-Yeom & Choi, Jai Won & Yoon, Kern-Shin & Yoon, Woon Sang & Yoon, Byungjoon & Lee, Tae Jong & Song, Yoonho, 2018. "Protocol for induced microseismicity in the first enhanced geothermal systems project in Pohang, Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1182-1191.
    3. Shu, Biao & Zhu, Runjun & Elsworth, Derek & Dick, Jeffrey & Liu, Shun & Tan, Jingqiang & Zhang, Shaohe, 2020. "Effect of temperature and confining pressure on the evolution of hydraulic and heat transfer properties of geothermal fracture in granite," Applied Energy, Elsevier, vol. 272(C).
    4. Lu, Shyi-Min, 2018. "A global review of enhanced geothermal system (EGS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2902-2921.
    5. Cui, Guodong & Ren, Shaoran & Zhang, Liang & Ezekiel, Justin & Enechukwu, Chioma & Wang, Yi & Zhang, Rui, 2017. "Geothermal exploitation from hot dry rocks via recycling heat transmission fluid in a horizontal well," Energy, Elsevier, vol. 128(C), pages 366-377.
    6. Falcone, Gioia & Liu, Xiaolei & Okech, Roy Radido & Seyidov, Ferid & Teodoriu, Catalin, 2018. "Assessment of deep geothermal energy exploitation methods: The need for novel single-well solutions," Energy, Elsevier, vol. 160(C), pages 54-63.
    7. Hou, Jianchao & Cao, Mengchao & Liu, Pingkuo, 2018. "Development and utilization of geothermal energy in China: Current practices and future strategies," Renewable Energy, Elsevier, vol. 125(C), pages 401-412.
    8. Yu, Han & Xu, Tianfu & Yuan, Yilong & Gherardi, Fabrizio & Feng, Bo & Jiang, Zhenjiao & Hu, Zixu, 2021. "Enhanced heat extraction for deep borehole heat exchanger through the jet grouting method using high thermal conductivity material," Renewable Energy, Elsevier, vol. 177(C), pages 1102-1115.
    9. Olasolo, P. & Juárez, M.C. & Morales, M.P. & D´Amico, Sebastiano & Liarte, I.A., 2016. "Enhanced geothermal systems (EGS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 133-144.
    10. Lei, Zhihong & Zhang, Yanjun & Zhang, Senqi & Fu, Lei & Hu, Zhongjun & Yu, Ziwang & Li, Liangzhen & Zhou, Jian, 2020. "Electricity generation from a three-horizontal-well enhanced geothermal system in the Qiabuqia geothermal field, China: Slickwater fracturing treatments for different reservoir scenarios," Renewable Energy, Elsevier, vol. 145(C), pages 65-83.
    11. Chamorro, César R. & García-Cuesta, José L. & Mondéjar, María E. & Pérez-Madrazo, Alfonso, 2014. "Enhanced geothermal systems in Europe: An estimation and comparison of the technical and sustainable potentials," Energy, Elsevier, vol. 65(C), pages 250-263.
    12. Chamorro, César R. & Mondéjar, María E. & Ramos, Roberto & Segovia, José J. & Martín, María C. & Villamañán, Miguel A., 2012. "World geothermal power production status: Energy, environmental and economic study of high enthalpy technologies," Energy, Elsevier, vol. 42(1), pages 10-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Shuai & Li, Jiqin & Gao, Hu & Dong, Jiankai & Jiang, Yiqiang, 2024. "Thermal performance of medium-deep U-type borehole heat exchanger based on a novel numerical model considering groundwater seepage," Renewable Energy, Elsevier, vol. 222(C).
    2. Wang, Changlong & Sun, Wanyu & Fu, Qiang & Lu, Yuehong & Zhang, Pengyuan, 2024. "Semi-analytical and numerical modeling of U-bend deep borehole heat exchanger," Renewable Energy, Elsevier, vol. 222(C).
    3. Liang, Yanzhong & Teng, Bailu & Luo, Wanjing, 2024. "A new semi-analytical model for studying the performance of deep U-shaped borehole heat exchangers," Renewable Energy, Elsevier, vol. 225(C).
    4. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    5. Niu, Qinghe & Ma, Kaiyuan & Wang, Wei & Pan, Jienan & Wang, Qizhi & Du, Zhigang & Wang, Zhenzhi & Yuan, Wei & Zheng, Yongxiang & Shangguan, Shuantong & Qi, Xiaofei & Pan, Miaomiao & Ji, Zhongmin, 2023. "Multifactor analysis of heat extraction performance of coaxial heat exchanger applied to hot dry rock resources exploration: A case study in matouying uplift, Tangshan, China," Energy, Elsevier, vol. 282(C).
    6. Zhang, Sheng & Liu, Jun & Zhang, Xia & Wang, Fenghao, 2024. "Properly shortening design time scale of medium-deep borehole heat exchanger for high building heating performances with high computational efficiency," Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Xinglan & Zhong, Xiuping & Nie, Shuaishuai & Wang, Yafei & Tu, Guigang & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2024. "Study on the heat recovery behavior of horizontal well systems in the Qiabuqia geothermal area of the Gonghe Basin, China," Energy, Elsevier, vol. 286(C).
    2. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    3. Yu, Han & Xu, Tianfu & Yuan, Yilong & Feng, Bo & ShangGuan, Shuantong, 2023. "Enhanced heat extraction performance from deep buried U-shaped well using the high-pressure jet grouting technology," Renewable Energy, Elsevier, vol. 202(C), pages 1377-1386.
    4. Wang, Gaosheng & Song, Xianzhi & Shi, Yu & Yang, Ruiyue & Yulong, Feixue & Zheng, Rui & Li, Jiacheng, 2021. "Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 974-986.
    5. Guo, Tiankui & Zhang, Yuelong & He, Jiayuan & Gong, Facheng & Chen, Ming & Liu, Xiaoqiang, 2021. "Research on geothermal development model of abandoned high temperature oil reservoir in North China oilfield," Renewable Energy, Elsevier, vol. 177(C), pages 1-12.
    6. Zhou, Luming & Zhu, Zhende & Xie, Xinghua & Hu, Yunjin, 2022. "Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance," Renewable Energy, Elsevier, vol. 181(C), pages 1440-1458.
    7. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Zhang, Haijun, 2020. "Numerical simulation study on the heat extraction performance of multi-well injection enhanced geothermal system," Renewable Energy, Elsevier, vol. 151(C), pages 782-795.
    8. Song, Guofeng & Song, Xianzhi & Ji, Jiayan & Wu, Xiaoguang & Li, Gensheng & Xu, Fuqiang & Shi, Yu & Wang, Gaosheng, 2022. "Evolution of fracture aperture and thermal productivity influenced by chemical reaction in enhanced geothermal system," Renewable Energy, Elsevier, vol. 186(C), pages 126-142.
    9. Zhen Zhao & Guangxiong Qin & Huijuan Chen & Linchao Yang & Songhe Geng & Ronghua Wen & Liang Zhang, 2022. "Numerical Simulation and Economic Evaluation of Wellbore Self-Circulation for Heat Extraction Using Cluster Horizontal Wells," Energies, MDPI, vol. 15(9), pages 1-26, April.
    10. Hou, Xinglan & Zhong, Xiuping & Nie, Shuaishuai & Wang, Yafei & Tu, Guigang & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2023. "Numerical simulation study of intermittent heat extraction from hot dry rock using horizontal well based on thermal compensation," Energy, Elsevier, vol. 272(C).
    11. Xue, Yi & Liu, Shuai & Chai, Junrui & Liu, Jia & Ranjith, P.G. & Cai, Chengzheng & Gao, Feng & Bai, Xue, 2023. "Effect of water-cooling shock on fracture initiation and morphology of high-temperature granite: Application of hydraulic fracturing to enhanced geothermal systems," Applied Energy, Elsevier, vol. 337(C).
    12. Anderson, Austin & Rezaie, Behnaz, 2019. "Geothermal technology: Trends and potential role in a sustainable future," Applied Energy, Elsevier, vol. 248(C), pages 18-34.
    13. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu, 2020. "Study on the effect of well layout schemes and fracture parameters on the heat extraction performance of enhanced geothermal system in fractured reservoir," Energy, Elsevier, vol. 202(C).
    14. Liu, Gang & Zhou, Chunwei & Rao, Zhenghua & Liao, Shengming, 2021. "Impacts of fracture network geometries on numerical simulation and performance prediction of enhanced geothermal systems," Renewable Energy, Elsevier, vol. 171(C), pages 492-504.
    15. Gong, Facheng & Guo, Tiankui & Sun, Wei & Li, Zhaomin & Yang, Bin & Chen, Yimei & Qu, Zhanqing, 2020. "Evaluation of geothermal energy extraction in Enhanced Geothermal System (EGS) with multiple fracturing horizontal wells (MFHW)," Renewable Energy, Elsevier, vol. 151(C), pages 1339-1351.
    16. Xue, Zhenqian & Ma, Haoming & Wei, Yizheng & Wu, Wei & Sun, Zhe & Chai, Maojie & Zhang, Chi & Chen, Zhangxin, 2024. "Integrated technological and economic feasibility comparisons of enhanced geothermal systems associated with carbon storage," Applied Energy, Elsevier, vol. 359(C).
    17. Yu, Han & Xu, Tianfu & Yuan, Yilong & Gherardi, Fabrizio & Feng, Bo & Jiang, Zhenjiao & Hu, Zixu, 2021. "Enhanced heat extraction for deep borehole heat exchanger through the jet grouting method using high thermal conductivity material," Renewable Energy, Elsevier, vol. 177(C), pages 1102-1115.
    18. Gao, Xuefeng & Zhang, Yanjun & Huang, Yibin & Ma, Yongjie & Zhao, Yi & Liu, Qiangbin, 2021. "Study on heat extraction considering the number and orientation of multilateral wells in a complex fractured geothermal reservoir," Renewable Energy, Elsevier, vol. 177(C), pages 833-852.
    19. Agson-Gani, Putra H. & Zueter, Ahmad F. & Xu, Minghan & Ghoreishi-Madiseh, Seyed Ali & Kurnia, Jundika C. & Sasmito, Agus P., 2022. "Thermal and hydraulic analysis of a novel double-pipe geothermal heat exchanger with a controlled fractured zone at the well bottom," Applied Energy, Elsevier, vol. 310(C).
    20. Xu, Tianfu & Liang, Xu & Xia, Yi & Jiang, Zhenjiao & Gherardi, Fabrizio, 2022. "Performance evaluation of the Habanero enhanced geothermal system, Australia: Optimization based on tracer and induced micro-seismicity data," Renewable Energy, Elsevier, vol. 181(C), pages 1197-1208.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:198:y:2022:i:c:p:894-906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.