IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v173y2021icp1027-1039.html
   My bibliography  Save this article

Impact of sloping porous seabed on the efficiency of an OWC against oblique waves

Author

Listed:
  • Khan, Mohamin B.M.
  • Behera, Harekrushna

Abstract

The study examines the influence of a sloping porous bed on the efficiency of an oscillating water column (OWC) device facing oblique water waves. A vertical, surface piercing, thin plate near a rigid wall approximates the OWC. The system is simulated using a multi-domain boundary element method assuming the linear potential theory. The impact of varying sloping bed structural parameters and influence of the incident wave angle on the performance of the OWC is evaluated and discussed. The significance of this model to act as a breakwater protecting near-shore marine facilities is also highlighted. The OWC efficiency is found to be highly sensitive to the slope of the porous seabed, and seabed porosity is found to stabilize the resonant frequency against changes in water levels. OWCs are found to be more efficient over porous seabeds with higher frictional coefficients and lower values of porosity. The results indicate the optimum values of the sloping bottom inclination, the porosity and the frictional coefficient for the porous sloping bottom that can be used for the design and implementation of an efficient OWC device.

Suggested Citation

  • Khan, Mohamin B.M. & Behera, Harekrushna, 2021. "Impact of sloping porous seabed on the efficiency of an OWC against oblique waves," Renewable Energy, Elsevier, vol. 173(C), pages 1027-1039.
  • Handle: RePEc:eee:renene:v:173:y:2021:i:c:p:1027-1039
    DOI: 10.1016/j.renene.2021.04.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121005644
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.04.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vyzikas, Thomas & Deshoulières, Samy & Barton, Matthew & Giroux, Olivier & Greaves, Deborah & Simmonds, Dave, 2017. "Experimental investigation of different geometries of fixed oscillating water column devices," Renewable Energy, Elsevier, vol. 104(C), pages 248-258.
    2. Rezanejad, K. & Bhattacharjee, J. & Guedes Soares, C., 2015. "Analytical and numerical study of dual-chamber oscillating water columns on stepped bottom," Renewable Energy, Elsevier, vol. 75(C), pages 272-282.
    3. Xu, Sheng & Wang, Shan & Guedes Soares, C., 2019. "Review of mooring design for floating wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 595-621.
    4. Ning, De-Zhi & Wang, Rong-Quan & Zou, Qing-Ping & Teng, Bin, 2016. "An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter," Applied Energy, Elsevier, vol. 168(C), pages 636-648.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Medina Rodríguez, Ayrton Alfonso & Silva Casarín, Rodolfo & Blanco Ilzarbe, Jesús María, 2022. "The influence of oblique waves on the hydrodynamic efficiency of an onshore OWC wave energy converter," Renewable Energy, Elsevier, vol. 183(C), pages 687-707.
    2. Mayon, Robert & Ning, Dezhi & Zhang, Chongwei & Chen, Lifen & Wang, Rongquan, 2021. "Wave energy capture by an omnidirectional point sink oscillating water column system," Applied Energy, Elsevier, vol. 304(C).
    3. Naik, Nikita & Gayathri, R. & Behera, H. & Tsai, Chia-Cheng, 2023. "Wave power extraction by a dual OWC chambers over an undulated bottom," Renewable Energy, Elsevier, vol. 216(C).
    4. Cheng, Yong & Fu, Lei & Dai, Saishuai & Collu, Maurizio & Cui, Lin & Yuan, Zhiming & Incecik, Atilla, 2022. "Experimental and numerical analysis of a hybrid WEC-breakwater system combining an oscillating water column and an oscillating buoy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    5. Mohapatra, Piyush & Vijay, K.G. & Bhattacharyya, Anirban & Sahoo, Trilochan, 2023. "Influence of distinct bottom geometries on the hydrodynamic performance of an OWC device," Energy, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trivedi, Kshma & Koley, Santanu, 2023. "Performance of a hybrid wave energy converter device consisting of a piezoelectric plate and oscillating water column device placed over an undulated seabed," Applied Energy, Elsevier, vol. 333(C).
    2. Wang, Chen & Zhang, Yongliang, 2021. "Numerical investigation on the wave power extraction for a 3D dual-chamber oscillating water column system composed of two closely connected circular sub-units," Applied Energy, Elsevier, vol. 295(C).
    3. Elhanafi, Ahmed & Macfarlane, Gregor & Ning, Dezhi, 2018. "Hydrodynamic performance of single–chamber and dual–chamber offshore–stationary Oscillating Water Column devices using CFD," Applied Energy, Elsevier, vol. 228(C), pages 82-96.
    4. Guo, Baoming & Ning, Dezhi & Wang, Rongquan & Ding, Boyin, 2021. "Hydrodynamics of an oscillating water column WEC - Breakwater integrated system with a pitching front-wall," Renewable Energy, Elsevier, vol. 176(C), pages 67-80.
    5. Dezhi Ning & Rongquan Wang & Chongwei Zhang, 2017. "Numerical Simulation of a Dual-Chamber Oscillating Water Column Wave Energy Converter," Sustainability, MDPI, vol. 9(9), pages 1-12, September.
    6. Naik, Nikita & Gayathri, R. & Behera, H. & Tsai, Chia-Cheng, 2023. "Wave power extraction by a dual OWC chambers over an undulated bottom," Renewable Energy, Elsevier, vol. 216(C).
    7. Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2022. "Numerical investigation of offshore oscillating water column devices," Renewable Energy, Elsevier, vol. 191(C), pages 380-393.
    8. Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Experimental and numerical investigations on the hydrodynamic performance of a floating–moored oscillating water column wave energy converter," Applied Energy, Elsevier, vol. 205(C), pages 369-390.
    9. Xu, Conghao & Huang, Zhenhua, 2018. "A dual-functional wave-power plant for wave-energy extraction and shore protection: A wave-flume study," Applied Energy, Elsevier, vol. 229(C), pages 963-976.
    10. Jeong-Seok Kim & Kyong-Hwan Kim & Jiyong Park & Sewan Park & Seung Ho Shin, 2021. "A Numerical Study on Hydrodynamic Energy Conversions of OWC-WEC with the Linear Decomposition Method under Irregular Waves," Energies, MDPI, vol. 14(6), pages 1-17, March.
    11. Kharati-Koopaee, Masoud & Fathi-Kelestani, Arman, 2020. "Assessment of oscillating water column performance: Influence of wave steepness at various chamber lengths and bottom slopes," Renewable Energy, Elsevier, vol. 147(P1), pages 1595-1608.
    12. Medina Rodríguez, Ayrton Alfonso & Trivedi, Kshma & Koley, Santanu & Oderiz Martinez, Itxaso & Mendoza, Edgar & Posada Vanegas, Gregorio & Silva, Rodolfo, 2023. "Improved hydrodynamic performance of an OWC device based on a Helmholtz resonator," Energy, Elsevier, vol. 273(C).
    13. Jin, Huaqing & Zhang, Haicheng & Xu, Daolin & Jun, Ding & Ze, Sun, 2022. "Low-frequency energy capture and water wave attenuation of a hybrid WEC-breakwater with nonlinear stiffness," Renewable Energy, Elsevier, vol. 196(C), pages 1029-1047.
    14. Wang, Chen & Zhang, Yongliang, 2021. "Hydrodynamic performance of an offshore Oscillating Water Column device mounted over an immersed horizontal plate: A numerical study," Energy, Elsevier, vol. 222(C).
    15. Trivedi, Kshma & Koley, Santanu, 2023. "Mathematical modeling of oscillating water column wave energy converter devices placed over an undulated seabed in a two-layer fluid system," Renewable Energy, Elsevier, vol. 216(C).
    16. Wang, Rong-quan & Ning, De-zhi, 2020. "Dynamic analysis of wave action on an OWC wave energy converter under the influence of viscosity," Renewable Energy, Elsevier, vol. 150(C), pages 578-588.
    17. Zhao, Xuanlie & Zhang, Lidong & Li, Mingwei & Johanning, Lars, 2021. "Experimental investigation on the hydrodynamic performance of a multi-chamber OWC-breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    18. Çelik, Anıl & Altunkaynak, Abdüsselam, 2019. "Experimental investigations on the performance of a fixed-oscillating water column type wave energy converter," Energy, Elsevier, vol. 188(C).
    19. Ning, De-Zhi & Wang, Rong-Quan & Gou, Ying & Zhao, Ming & Teng, Bin, 2016. "Numerical and experimental investigation of wave dynamics on a land-fixed OWC device," Energy, Elsevier, vol. 115(P1), pages 326-337.
    20. Elhanafi, Ahmed & Kim, Chan Joo, 2018. "Experimental and numerical investigation on wave height and power take–off damping effects on the hydrodynamic performance of an offshore–stationary OWC wave energy converter," Renewable Energy, Elsevier, vol. 125(C), pages 518-528.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:173:y:2021:i:c:p:1027-1039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.