IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v169y2021icp1252-1264.html
   My bibliography  Save this article

Multiaxial fatigue assessment of jacket-supported offshore wind turbines considering multiple random correlated loads

Author

Listed:
  • Han, Chaoshuai
  • Liu, Kun
  • Ma, Yongliang
  • Qin, Peijiang
  • Zou, Tao

Abstract

Fatigue analysis is an important part of the design process for offshore wind turbines (OWTs). The aerodynamic wind forces are the main fatigue loads, and are generally transformed into six load components: Fx, Fy, Fz, Mx, My, and Mz, which may lead to hotspots of concentrated multiaxial stress. In addition, the six wind load components may be correlated, which makes fatigue analysis complex. To address these issues, this paper derives and presents two new formulae to account for load correlation in the determination of stress power spectral density (PSD) from multiple random loads based on the interaction equation approach and the first principle stress approach. These two formulae form two frequency domain fatigue criteria to evaluate fatigue life of OWT support structures. Two frequency domain criteria are validated through comparison with full time domain analysis results.

Suggested Citation

  • Han, Chaoshuai & Liu, Kun & Ma, Yongliang & Qin, Peijiang & Zou, Tao, 2021. "Multiaxial fatigue assessment of jacket-supported offshore wind turbines considering multiple random correlated loads," Renewable Energy, Elsevier, vol. 169(C), pages 1252-1264.
  • Handle: RePEc:eee:renene:v:169:y:2021:i:c:p:1252-1264
    DOI: 10.1016/j.renene.2021.01.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121001002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.01.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Jinsong & Thomas, Edwin & Goyal, Anshul & Manuel, Lance, 2019. "Design loads for a large wind turbine supported by a semi-submersible floating platform," Renewable Energy, Elsevier, vol. 138(C), pages 923-936.
    2. Li, Xuan & Zhang, Wei, 2020. "Long-term fatigue damage assessment for a floating offshore wind turbine under realistic environmental conditions," Renewable Energy, Elsevier, vol. 159(C), pages 570-584.
    3. Li, He & Teixeira, Angelo P. & Guedes Soares, C., 2020. "A two-stage Failure Mode and Effect Analysis of offshore wind turbines," Renewable Energy, Elsevier, vol. 162(C), pages 1438-1461.
    4. Abdelbaky, Mohamed Abdelkarim & Liu, Xiangjie & Jiang, Di, 2020. "Design and implementation of partial offline fuzzy model-predictive pitch controller for large-scale wind-turbines," Renewable Energy, Elsevier, vol. 145(C), pages 981-996.
    5. Li, Xuan & Zhang, Wei, 2020. "Long-term assessment of a floating offshore wind turbine under environmental conditions with multivariate dependence structures," Renewable Energy, Elsevier, vol. 147(P1), pages 764-775.
    6. Ju, Shen-Haw & Su, Feng-Chien & Ke, Yi-Pei & Xie, Min-Hsuan, 2019. "Fatigue design of offshore wind turbine jacket-type structures using a parallel scheme," Renewable Energy, Elsevier, vol. 136(C), pages 69-78.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ju, Shen-Haw, 2022. "Increasing the fatigue life of offshore wind turbine jacket structures using yaw stiffness and damping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
    2. Li, Xuan & Zhang, Wei, 2022. "Physics-informed deep learning model in wind turbine response prediction," Renewable Energy, Elsevier, vol. 185(C), pages 932-944.
    3. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Wang, Yili & Tao, Jianquan, 2022. "Operational state assessment of wind turbine gearbox based on long short-term memory networks and fuzzy synthesis," Renewable Energy, Elsevier, vol. 181(C), pages 1167-1176.
    4. Abramic, A. & García Mendoza, A. & Haroun, R., 2021. "Introducing offshore wind energy in the sea space: Canary Islands case study developed under Maritime Spatial Planning principles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Mohammad Barooni & Turaj Ashuri & Deniz Velioglu Sogut & Stephen Wood & Shiva Ghaderpour Taleghani, 2022. "Floating Offshore Wind Turbines: Current Status and Future Prospects," Energies, MDPI, vol. 16(1), pages 1-28, December.
    6. Ramezani, Mahyar & Choe, Do-Eun & Heydarpour, Khashayar & Koo, Bonjun, 2023. "Uncertainty models for the structural design of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    7. Song, Yupeng & Sun, Tao & Zhang, Zili, 2023. "Fatigue reliability analysis of floating offshore wind turbines considering the uncertainty due to finite sampling of load conditions," Renewable Energy, Elsevier, vol. 212(C), pages 570-588.
    8. Kong, Xiaobing & Ma, Lele & Wang, Ce & Guo, Shifan & Abdelbaky, Mohamed Abdelkarim & Liu, Xiangjie & Lee, Kwang Y., 2022. "Large-scale wind farm control using distributed economic model predictive scheme," Renewable Energy, Elsevier, vol. 181(C), pages 581-591.
    9. Song, Yupeng & Basu, Biswajit & Zhang, Zili & Sørensen, John Dalsgaard & Li, Jie & Chen, Jianbing, 2021. "Dynamic reliability analysis of a floating offshore wind turbine under wind-wave joint excitations via probability density evolution method," Renewable Energy, Elsevier, vol. 168(C), pages 991-1014.
    10. Wang, Hao & Wang, Tongguang & Ke, Shitang & Hu, Liang & Xie, Jiaojie & Cai, Xin & Cao, Jiufa & Ren, Yuxin, 2023. "Assessing code-based design wind loads for offshore wind turbines in China against typhoons," Renewable Energy, Elsevier, vol. 212(C), pages 669-682.
    11. Arabgolarcheh, Alireza & Rouhollahi, Amirhossein & Benini, Ernesto, 2023. "Analysis of middle-to-far wake behind floating offshore wind turbines in the presence of multiple platform motions," Renewable Energy, Elsevier, vol. 208(C), pages 546-560.
    12. Yang, Yang & Fu, Jianbin & Shi, Zhaobin & Ma, Lu & Yu, Jie & Fang, Fang & Chen, Shunhua & Lin, Zaibin & Li, Chun, 2023. "Performance and fatigue analysis of an integrated floating wind-current energy system considering the aero-hydro-servo-elastic coupling effects," Renewable Energy, Elsevier, vol. 216(C).
    13. Xiaobing Kong & Lele Ma & Xiangjie Liu & Mohamed Abdelkarim Abdelbaky & Qian Wu, 2020. "Wind Turbine Control Using Nonlinear Economic Model Predictive Control over All Operating Regions," Energies, MDPI, vol. 13(1), pages 1-21, January.
    14. Li, Jianshen & Wang, Shuangxin, 2021. "Dual multivariable model-free adaptive individual pitch control for load reduction in wind turbines with actuator faults," Renewable Energy, Elsevier, vol. 174(C), pages 293-304.
    15. Weldon Carlos Elias Teixeira & Miguel Ángel Sanz-Bobi & Roberto Célio Limão de Oliveira, 2022. "Applying Intelligent Multi-Agents to Reduce False Alarms in Wind Turbine Monitoring Systems," Energies, MDPI, vol. 15(19), pages 1-28, October.
    16. Liu, Ding Peng & Ferri, Giulio & Heo, Taemin & Marino, Enzo & Manuel, Lance, 2024. "On long-term fatigue damage estimation for a floating offshore wind turbine using a surrogate model," Renewable Energy, Elsevier, vol. 225(C).
    17. Li, Xuan & Zhang, Wei, 2020. "Long-term fatigue damage assessment for a floating offshore wind turbine under realistic environmental conditions," Renewable Energy, Elsevier, vol. 159(C), pages 570-584.
    18. Nitin S. Solke & Pritesh Shah & Ravi Sekhar & T. P. Singh, 2022. "Machine Learning-Based Predictive Modeling and Control of Lean Manufacturing in Automotive Parts Manufacturing Industry," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(1), pages 89-112, March.
    19. Li, He & Diaz, H. & Guedes Soares, C., 2021. "A developed failure mode and effect analysis for floating offshore wind turbine support structures," Renewable Energy, Elsevier, vol. 164(C), pages 133-145.
    20. Karijadi, Irene & Chou, Shuo-Yan & Dewabharata, Anindhita, 2023. "Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method," Renewable Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:169:y:2021:i:c:p:1252-1264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.