IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v167y2021icp473-483.html
   My bibliography  Save this article

Mass and energy integration study of hydrothermal carbonization with anaerobic digestion of sewage sludge

Author

Listed:
  • Aragón-Briceño, C.I.
  • Ross, A.B.
  • Camargo-Valero, M.A.

Abstract

Anaerobic Digestion is the most common process used for energy generation from sewage sludge but only one half of the sewage sludge is susceptible to biodegradation. Hydrothermal Carbonization is considered an option for harness all the energy embedded in sewage sludge because of its high-value products (Hydrochar and Process waters). The integration AD followed by HTC is a recent approach that is still under development. The challenge is to provide evidence for coupling HTC with the existing infrastructure at wastewater treatment works. In this work, a mass and energy integration study of the potential of coupling HTC with AD for sewage sludge treatment was evaluated. Six proposed process configurations were built using primary sludge, secondary sludge and a mix, in order to evaluate net waste generation, fate of nutrients, net energy production and potential economic benefits. The proposed scenarios showed an overall total solid and COD reduction up to 68 and 66% respectively. The inclusion of hydrochar as a fuel source increased the net energy production 10 times compared when only biogas is considered as an energy source. The potential struvite production ranged from 0.02 to 0.06 kg per tonne of sludge treated. Scenarios with 250 °C thermal treatment temperature provided better economic benefits when struvite and hydrochar are considered.

Suggested Citation

  • Aragón-Briceño, C.I. & Ross, A.B. & Camargo-Valero, M.A., 2021. "Mass and energy integration study of hydrothermal carbonization with anaerobic digestion of sewage sludge," Renewable Energy, Elsevier, vol. 167(C), pages 473-483.
  • Handle: RePEc:eee:renene:v:167:y:2021:i:c:p:473-483
    DOI: 10.1016/j.renene.2020.11.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120318553
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.11.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koottatep, Thammarat & Fakkaew, Krailak & Tajai, Nutnicha & Pradeep, Sangeetha V. & Polprasert, Chongrak, 2016. "Sludge stabilization and energy recovery by hydrothermal carbonization process," Renewable Energy, Elsevier, vol. 99(C), pages 978-985.
    2. Villamil, J.A. & Mohedano, A.F. & San Martín, J. & Rodriguez, J.J. & de la Rubia, M.A., 2020. "Anaerobic co-digestion of the process water from waste activated sludge hydrothermally treated with primary sewage sludge. A new approach for sewage sludge management," Renewable Energy, Elsevier, vol. 146(C), pages 435-443.
    3. Michela Lucian & Luca Fiori, 2017. "Hydrothermal Carbonization of Waste Biomass: Process Design, Modeling, Energy Efficiency and Cost Analysis," Energies, MDPI, vol. 10(2), pages 1-18, February.
    4. Zhai, Yunbo & Peng, Chuan & Xu, Bibo & Wang, Tengfei & Li, Caiting & Zeng, Guangming & Zhu, Yun, 2017. "Hydrothermal carbonisation of sewage sludge for char production with different waste biomass: Effects of reaction temperature and energy recycling," Energy, Elsevier, vol. 127(C), pages 167-174.
    5. Aragón-Briceño, C.I. & Grasham, O. & Ross, A.B. & Dupont, V. & Camargo-Valero, M.A., 2020. "Hydrothermal carbonization of sewage digestate at wastewater treatment works: Influence of solid loading on characteristics of hydrochar, process water and plant energetics," Renewable Energy, Elsevier, vol. 157(C), pages 959-973.
    6. Qiao, Wei & Yan, Xiuyi & Ye, Junhui & Sun, Yifei & Wang, Wei & Zhang, Zhongzhi, 2011. "Evaluation of biogas production from different biomass wastes with/without hydrothermal pretreatment," Renewable Energy, Elsevier, vol. 36(12), pages 3313-3318.
    7. Kiran R. Parmar & Andrew B. Ross, 2019. "Integration of Hydrothermal Carbonisation with Anaerobic Digestion; Opportunities for Valorisation of Digestate," Energies, MDPI, vol. 12(9), pages 1-17, April.
    8. Li, Liang & Flora, Joseph R.V. & Berge, Nicole D., 2020. "Predictions of energy recovery from hydrochar generated from the hydrothermal carbonization of organic wastes," Renewable Energy, Elsevier, vol. 145(C), pages 1883-1889.
    9. De la Rubia, M.A. & Villamil, J.A. & Rodriguez, J.J. & Mohedano, A.F., 2018. "Effect of inoculum source and initial concentration on the anaerobic digestion of the liquid fraction from hydrothermal carbonisation of sewage sludge," Renewable Energy, Elsevier, vol. 127(C), pages 697-704.
    10. Ahn, Hyungjun & Kim, Donghee & Lee, Youngjae, 2020. "Combustion characteristics of sewage sludge solid fuels produced by drying and hydrothermal carbonization in a fluidized bed," Renewable Energy, Elsevier, vol. 147(P1), pages 957-968.
    11. Pagés-Díaz, Jhosané & Cerda Alvarado, Andrés Osvaldo & Montalvo, Silvio & Diaz-Robles, Luis & Curio, César Huiliñir, 2020. "Anaerobic bio-methane potential of the liquors from hydrothermal carbonization of different lignocellulose biomasses," Renewable Energy, Elsevier, vol. 157(C), pages 182-189.
    12. Wang, Liping & Chang, Yuzhi & Li, Aimin, 2019. "Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 423-440.
    13. He, Chao & Giannis, Apostolos & Wang, Jing-Yuan, 2013. "Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior," Applied Energy, Elsevier, vol. 111(C), pages 257-266.
    14. Gabriel D. Oreggioni & Baboo Lesh Gowreesunker & Savvas A. Tassou & Giuseppe Bianchi & Matthew Reilly & Marie E. Kirby & Trisha A. Toop & Mike K. Theodorou, 2017. "Potential for Energy Production from Farm Wastes Using Anaerobic Digestion in the UK: An Economic Comparison of Different Size Plants," Energies, MDPI, vol. 10(9), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jakub Mukawa & Tadeusz Pająk & Tadeusz Rzepecki & Marian Banaś, 2022. "Energy Potential of Biogas from Sewage Sludge after Thermal Hydrolysis and Digestion," Energies, MDPI, vol. 15(14), pages 1-15, July.
    2. Halina Pawlak-Kruczek & Agnieszka Urbanowska & Lukasz Niedzwiecki & Michał Czerep & Marcin Baranowski & Christian Aragon-Briceño & Małgorzata Kabsch-Korbutowicz & Amit Arora & Przemysław Seruga & Mate, 2023. "Hydrothermal Carbonisation as Treatment for Effective Moisture Removal from Digestate—Mechanical Dewatering, Flashing-Off, and Condensates’ Processing," Energies, MDPI, vol. 16(13), pages 1-9, July.
    3. Krystian Krochmalny & Halina Pawlak-Kruczek & Norbert Skoczylas & Mateusz Kudasik & Aleksandra Gajda & Renata Gnatowska & Monika Serafin-Tkaczuk & Tomasz Czapka & Amit K. Jaiswal & Vishwajeet & Amit A, 2022. "Use of Hydrothermal Carbonization and Cold Atmospheric Plasma for Surface Modification of Brewer’s Spent Grain and Activated Carbon," Energies, MDPI, vol. 15(12), pages 1-11, June.
    4. Andrea Salimbeni & Marta Di Bianca & Andrea Maria Rizzo & David Chiaramonti, 2023. "Activated Carbon and P-Rich Fertilizer Production from Industrial Sludge by Application of an Integrated Thermo-Chemical Treatment," Sustainability, MDPI, vol. 15(19), pages 1-24, October.
    5. Dilvin Cebi & Melih Soner Celiktas & Hasan Sarptas, 2022. "A Review on Sewage Sludge Valorization via Hydrothermal Carbonization and Applications for Circular Economy," Circular Economy and Sustainability, Springer, vol. 2(4), pages 1345-1367, December.
    6. Vishwajeet & Halina Pawlak-Kruczek & Marcin Baranowski & Michał Czerep & Artur Chorążyczewski & Krystian Krochmalny & Michał Ostrycharczyk & Paweł Ziółkowski & Paweł Madejski & Tadeusz Mączka & Amit A, 2022. "Entrained Flow Plasma Gasification of Sewage Sludge–Proof-of-Concept and Fate of Inorganics," Energies, MDPI, vol. 15(5), pages 1-14, March.
    7. Nicola Di Costanzo & Alessandra Cesaro & Francesco Di Capua & Giovanni Esposito, 2021. "Exploiting the Nutrient Potential of Anaerobically Digested Sewage Sludge: A Review," Energies, MDPI, vol. 14(23), pages 1-25, December.
    8. Agnieszka Urbanowska & Małgorzata Kabsch-Korbutowicz & Christian Aragon-Briceño & Mateusz Wnukowski & Artur Pożarlik & Lukasz Niedzwiecki & Marcin Baranowski & Michał Czerep & Przemysław Seruga & Hali, 2021. "Cascade Membrane System for Separation of Water and Organics from Liquid By-Products of HTC of the Agricultural Digestate—Evaluation of Performance," Energies, MDPI, vol. 14(16), pages 1-18, August.
    9. Tomasz Hardy & Amit Arora & Halina Pawlak-Kruczek & Wojciech Rafajłowicz & Jerzy Wietrzych & Łukasz Niedźwiecki & Vishwajeet & Krzysztof Mościcki, 2021. "Non-Destructive Diagnostic Methods for Fire-Side Corrosion Risk Assessment of Industrial Scale Boilers, Burning Low Quality Solid Biofuels—A Mini Review," Energies, MDPI, vol. 14(21), pages 1-15, November.
    10. Aragon-Briceño, Christian & Pożarlik, Artur & Bramer, Eddy & Brem, Gerrit & Wang, Shule & Wen, Yuming & Yang, Weihong & Pawlak-Kruczek, Halina & Niedźwiecki, Łukasz & Urbanowska, Agnieszka & Mościcki,, 2022. "Integration of hydrothermal carbonization treatment for water and energy recovery from organic fraction of municipal solid waste digestate," Renewable Energy, Elsevier, vol. 184(C), pages 577-591.
    11. Pietro Romano & Nicola Stampone & Gabriele Di Giacomo, 2023. "Evolution and Prospects of Hydrothermal Carbonization," Energies, MDPI, vol. 16(7), pages 1-11, March.
    12. Urbanowska, Agnieszka & Niedzwiecki, Lukasz & Wnukowski, Mateusz & Aragon-Briceño, Christian & Kabsch-Korbutowicz, Małgorzata & Baranowski, Marcin & Czerep, Michał & Seruga, Przemysław & Pawlak-Krucze, 2023. "Recovery of chemical energy from retentates from cascade membrane filtration of hydrothermal carbonisation effluent," Energy, Elsevier, vol. 284(C).
    13. Kossińska, Nina & Grosser, Anna & Kwapińska, Marzena & Kwapiński, Witold & Ghazal, Heba & Jouhara, Hussam & Krzyżyńska, Renata, 2024. "Co-hydrothermal carbonization as a potential method of utilising digested sludge and screenings from wastewater treatment plants towards energy application," Energy, Elsevier, vol. 299(C).
    14. Ayala-Cortés, Alejandro & Arcelus-Arrillaga, Pedro & Millan, Marcos & Okoye, Patrick U. & Arancibia-Bulnes, Camilo A. & Pacheco-Catalán, Daniella Esperanza & Villafán-Vidales, Heidi Isabel, 2022. "Solar hydrothermal processing of agave bagasse: Insights on the effect of operational parameters," Renewable Energy, Elsevier, vol. 192(C), pages 14-23.
    15. Magdziarz, Aneta & Mlonka-Mędrala, Agata & Sieradzka, Małgorzata & Aragon-Briceño, Christian & Pożarlik, Artur & Bramer, Eddy A. & Brem, Gerrit & Niedzwiecki, Łukasz & Pawlak-Kruczek, Halina, 2021. "Multiphase analysis of hydrochars obtained by anaerobic digestion of municipal solid waste organic fraction," Renewable Energy, Elsevier, vol. 175(C), pages 108-118.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pagés-Díaz, Jhosané & Cerda Alvarado, Andrés Osvaldo & Montalvo, Silvio & Diaz-Robles, Luis & Curio, César Huiliñir, 2020. "Anaerobic bio-methane potential of the liquors from hydrothermal carbonization of different lignocellulose biomasses," Renewable Energy, Elsevier, vol. 157(C), pages 182-189.
    2. Aragon-Briceño, Christian & Pożarlik, Artur & Bramer, Eddy & Brem, Gerrit & Wang, Shule & Wen, Yuming & Yang, Weihong & Pawlak-Kruczek, Halina & Niedźwiecki, Łukasz & Urbanowska, Agnieszka & Mościcki,, 2022. "Integration of hydrothermal carbonization treatment for water and energy recovery from organic fraction of municipal solid waste digestate," Renewable Energy, Elsevier, vol. 184(C), pages 577-591.
    3. Kossińska, Nina & Krzyżyńska, Renata & Ghazal, Heba & Jouhara, Hussam, 2023. "Hydrothermal carbonisation of sewage sludge and resulting biofuels as a sustainable energy source," Energy, Elsevier, vol. 275(C).
    4. Czerwińska, Klaudia & Śliz, Maciej & Wilk, Małgorzata, 2022. "Hydrothermal carbonization process: Fundamentals, main parameter characteristics and possible applications including an effective method of SARS-CoV-2 mitigation in sewage sludge. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Wilk, Małgorzata & Śliz, Maciej & Lubieniecki, Bogusław, 2021. "Hydrothermal co-carbonization of sewage sludge and fuel additives: Combustion performance of hydrochar," Renewable Energy, Elsevier, vol. 178(C), pages 1046-1056.
    6. Roberta Ferrentino & Fabio Merzari & Luca Fiori & Gianni Andreottola, 2020. "Coupling Hydrothermal Carbonization with Anaerobic Digestion for Sewage Sludge Treatment: Influence of HTC Liquor and Hydrochar on Biomethane Production," Energies, MDPI, vol. 13(23), pages 1-19, November.
    7. Dilvin Cebi & Melih Soner Celiktas & Hasan Sarptas, 2022. "A Review on Sewage Sludge Valorization via Hydrothermal Carbonization and Applications for Circular Economy," Circular Economy and Sustainability, Springer, vol. 2(4), pages 1345-1367, December.
    8. Małgorzata Wilk & Marcin Gajek & Maciej Śliz & Klaudia Czerwińska & Lidia Lombardi, 2022. "Hydrothermal Carbonization Process of Digestate from Sewage Sludge: Chemical and Physical Properties of Hydrochar in Terms of Energy Application," Energies, MDPI, vol. 15(18), pages 1-17, September.
    9. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    10. Siti Zaharah Roslan & Siti Fairuz Zainudin & Alijah Mohd Aris & Khor Bee Chin & Mohibah Musa & Ahmad Rafizan Mohamad Daud & Syed Shatir A. Syed Hassan, 2023. "Hydrothermal Carbonization of Sewage Sludge into Solid Biofuel: Influences of Process Conditions on the Energetic Properties of Hydrochar," Energies, MDPI, vol. 16(5), pages 1-16, March.
    11. Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    12. Aaron E. Brown & Jessica M. M. Adams & Oliver R. Grasham & Miller Alonso Camargo-Valero & Andrew B. Ross, 2020. "An Assessment of Different Integration Strategies of Hydrothermal Carbonisation and Anaerobic Digestion of Water Hyacinth," Energies, MDPI, vol. 13(22), pages 1-26, November.
    13. Ioannis O. Vardiambasis & Theodoros N. Kapetanakis & Christos D. Nikolopoulos & Trinh Kieu Trang & Toshiki Tsubota & Ramazan Keyikoglu & Alireza Khataee & Dimitrios Kalderis, 2020. "Hydrochars as Emerging Biofuels: Recent Advances and Application of Artificial Neural Networks for the Prediction of Heating Values," Energies, MDPI, vol. 13(17), pages 1-20, September.
    14. Marin-Batista, J.D. & Villamil, J.A. & Qaramaleki, S.V. & Coronella, C.J. & Mohedano, A.F. & Rubia, M.A. de la, 2020. "Energy valorization of cow manure by hydrothermal carbonization and anaerobic digestion," Renewable Energy, Elsevier, vol. 160(C), pages 623-632.
    15. Djandja, Oraléou Sangué & Salami, Adekunlé Akim & Wang, Zhi-Cong & Duo, Jia & Yin, Lin-Xin & Duan, Pei-Gao, 2022. "Random forest-based modeling for insights on phosphorus content in hydrochar produced from hydrothermal carbonization of sewage sludge," Energy, Elsevier, vol. 245(C).
    16. Villamil, J.A. & Mohedano, A.F. & San Martín, J. & Rodriguez, J.J. & de la Rubia, M.A., 2020. "Anaerobic co-digestion of the process water from waste activated sludge hydrothermally treated with primary sewage sludge. A new approach for sewage sludge management," Renewable Energy, Elsevier, vol. 146(C), pages 435-443.
    17. Urbanowska, Agnieszka & Niedzwiecki, Lukasz & Wnukowski, Mateusz & Aragon-Briceño, Christian & Kabsch-Korbutowicz, Małgorzata & Baranowski, Marcin & Czerep, Michał & Seruga, Przemysław & Pawlak-Krucze, 2023. "Recovery of chemical energy from retentates from cascade membrane filtration of hydrothermal carbonisation effluent," Energy, Elsevier, vol. 284(C).
    18. Pablo J. Arauzo & María Atienza-Martínez & Javier Ábrego & Maciej P. Olszewski & Zebin Cao & Andrea Kruse, 2020. "Combustion Characteristics of Hydrochar and Pyrochar Derived from Digested Sewage Sludge," Energies, MDPI, vol. 13(16), pages 1-15, August.
    19. Śliz, Maciej & Wilk, Małgorzata, 2020. "A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow," Renewable Energy, Elsevier, vol. 156(C), pages 942-950.
    20. Pietro Romano & Nicola Stampone & Gabriele Di Giacomo, 2023. "Evolution and Prospects of Hydrothermal Carbonization," Energies, MDPI, vol. 16(7), pages 1-11, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:167:y:2021:i:c:p:473-483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.