IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14620-d1255941.html
   My bibliography  Save this article

Activated Carbon and P-Rich Fertilizer Production from Industrial Sludge by Application of an Integrated Thermo-Chemical Treatment

Author

Listed:
  • Andrea Salimbeni

    (Renewable Energy Consortium for Research and Demonstration (RE-CORD), Viale Kennedy, 182, 50038 Scarperia e San Piero, Italy
    Department of Industrial Engineering, University of Florence, Via di S. Marta, 3, 50139 Florence, Italy)

  • Marta Di Bianca

    (Renewable Energy Consortium for Research and Demonstration (RE-CORD), Viale Kennedy, 182, 50038 Scarperia e San Piero, Italy
    Department of Civil and Environmental Engineering, University of Florence, Via di S. Marta, 3, 50139 Florence, Italy)

  • Andrea Maria Rizzo

    (Renewable Energy Consortium for Research and Demonstration (RE-CORD), Viale Kennedy, 182, 50038 Scarperia e San Piero, Italy
    Department of Industrial Engineering, University of Florence, Via di S. Marta, 3, 50139 Florence, Italy)

  • David Chiaramonti

    (Renewable Energy Consortium for Research and Demonstration (RE-CORD), Viale Kennedy, 182, 50038 Scarperia e San Piero, Italy
    “Galileo Ferraris” Energy Department, Polytechnic of Turin, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy)

Abstract

The cost and environmental impact of sludge disposal methods highlight the necessity of new solutions for resource recovery. This study aims at concurrently producing activated carbon while recovering phosphorous by applying an integrated thermo-chemical treatment to a sludge of industrial origin. The sludge was first subjected to slow pyrolysis on a laboratory scale at different temperatures, and the produced chars were processed by leaching to obtain biocoal. Leaching tests enabled us to define the optimal slow pyrolysis temperatures to maximize leaching performances. Then, sludge was processed in a slow pyrolysis pilot-scale plant, and the produced char was subjected to acid leaching and finally to physical activation. Chemical precipitation was then applied to the liquid leachate to recover phosphorous as a salt. Laboratory-scale slow pyrolysis and leaching tests showed that a higher pyrolysis temperature leads to a lower degree of demineralization by leaching. Leaching enabled us to reduce the char ash content by almost 88%, extracting 100% P, Mg, Ca, and Fe and almost 90% Al. Physical activation of biocoal with CO 2 at 700 and 800 °C produced materials with a surface area of 353 and 417 m 2 g −1 , respectively, that make them potentially applicable as adsorbents in wastewater treatment or in industrial emissions processes. Moreover, the activated carbons showed the atomic H/C and O/C ratios of anthracite, which opens a wide range of alternative market applications to fossil coal, such as metallurgy and the advanced material sector. In addition, the high P and K concentrations in the salt obtained by precipitation make it a promising fertilizing product in line with the current regulations.

Suggested Citation

  • Andrea Salimbeni & Marta Di Bianca & Andrea Maria Rizzo & David Chiaramonti, 2023. "Activated Carbon and P-Rich Fertilizer Production from Industrial Sludge by Application of an Integrated Thermo-Chemical Treatment," Sustainability, MDPI, vol. 15(19), pages 1-24, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14620-:d:1255941
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14620/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14620/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael C. Mew & Gerald Steiner & Bernhard Geissler, 2018. "Phosphorus Supply Chain—Scientific, Technical, and Economic Foundations: A Transdisciplinary Orientation," Sustainability, MDPI, vol. 10(4), pages 1-18, April.
    2. Fytili, D. & Zabaniotou, A., 2008. "Utilization of sewage sludge in EU application of old and new methods--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 116-140, January.
    3. Mohammad Ghorbani & Petr Konvalina & Anna Walkiewicz & Reinhard W. Neugschwandtner & Marek Kopecký & Kazem Zamanian & Wei-Hsin Chen & Daniel Bucur, 2022. "Feasibility of Biochar Derived from Sewage Sludge to Promote Sustainable Agriculture and Mitigate GHG Emissions—A Review," IJERPH, MDPI, vol. 19(19), pages 1-23, October.
    4. Aragón-Briceño, C.I. & Ross, A.B. & Camargo-Valero, M.A., 2021. "Mass and energy integration study of hydrothermal carbonization with anaerobic digestion of sewage sludge," Renewable Energy, Elsevier, vol. 167(C), pages 473-483.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dilvin Cebi & Melih Soner Celiktas & Hasan Sarptas, 2022. "A Review on Sewage Sludge Valorization via Hydrothermal Carbonization and Applications for Circular Economy," Circular Economy and Sustainability,, Springer.
    2. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Sanchez, M.E. & Otero, M. & Gómez, X. & Morán, A., 2009. "Thermogravimetric kinetic analysis of the combustion of biowastes," Renewable Energy, Elsevier, vol. 34(6), pages 1622-1627.
    4. Pietro Romano & Nicola Stampone & Gabriele Di Giacomo, 2023. "Evolution and Prospects of Hydrothermal Carbonization," Energies, MDPI, vol. 16(7), pages 1-11, March.
    5. Seongmin Kang & Changsang Cho & Ki-Hyun Kim & Eui-chan Jeon, 2018. "Fossil Carbon Fraction and Measuring Cycle for Sewage Sludge Waste Incineration," Sustainability, MDPI, vol. 10(8), pages 1-8, August.
    6. Jiawen Zhang & Zhiyi Liang & Toru Matsumoto & Tiejia Zhang, 2022. "Environmental and Economic Implication of Implementation Scale of Sewage Sludge Recycling Systems Considering Carbon Trading Price," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    7. Bidart, Christian & Fröhling, Magnus & Schultmann, Frank, 2014. "Electricity and substitute natural gas generation from the conversion of wastewater treatment plant sludge," Applied Energy, Elsevier, vol. 113(C), pages 404-413.
    8. Wang, Liping & Chang, Yuzhi & Li, Aimin, 2019. "Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 423-440.
    9. Faubert, Patrick & Barnabé, Simon & Bouchard, Sylvie & Côté, Richard & Villeneuve, Claude, 2016. "Pulp and paper mill sludge management practices: What are the challenges to assess the impacts on greenhouse gas emissions?," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 107-133.
    10. Junshen Qu & Daiying Wang & Zeyu Deng & Hejie Yu & Jianjun Dai & Xiaotao Bi, 2023. "Biochar Prepared by Microwave-Assisted Co-Pyrolysis of Sewage Sludge and Cotton Stalk: A Potential Soil Conditioner," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    11. Magdziarz, Aneta & Wilk, Małgorzata & Gajek, Marcin & Nowak-Woźny, Dorota & Kopia, Agnieszka & Kalemba-Rec, Izabela & Koziński, Janusz A., 2016. "Properties of ash generated during sewage sludge combustion: A multifaceted analysis," Energy, Elsevier, vol. 113(C), pages 85-94.
    12. Juan Félix González & Carmen María Álvez-Medina & Sergio Nogales-Delgado, 2023. "Biogas Steam Reforming in Wastewater Treatment Plants: Opportunities and Challenges," Energies, MDPI, vol. 16(17), pages 1-35, September.
    13. Vishwajeet & Halina Pawlak-Kruczek & Marcin Baranowski & Michał Czerep & Artur Chorążyczewski & Krystian Krochmalny & Michał Ostrycharczyk & Paweł Ziółkowski & Paweł Madejski & Tadeusz Mączka & Amit A, 2022. "Entrained Flow Plasma Gasification of Sewage Sludge–Proof-of-Concept and Fate of Inorganics," Energies, MDPI, vol. 15(5), pages 1-14, March.
    14. Praspaliauskas, M. & Pedišius, N., 2017. "A review of sludge characteristics in Lithuania's wastewater treatment plants and perspectives of its usage in thermal processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 899-907.
    15. Halina Pawlak-Kruczek & Agnieszka Urbanowska & Lukasz Niedzwiecki & Michał Czerep & Marcin Baranowski & Christian Aragon-Briceño & Małgorzata Kabsch-Korbutowicz & Amit Arora & Przemysław Seruga & Mate, 2023. "Hydrothermal Carbonisation as Treatment for Effective Moisture Removal from Digestate—Mechanical Dewatering, Flashing-Off, and Condensates’ Processing," Energies, MDPI, vol. 16(13), pages 1-9, July.
    16. Beegle, Jeffrey R. & Borole, Abhijeet P., 2018. "Energy production from waste: Evaluation of anaerobic digestion and bioelectrochemical systems based on energy efficiency and economic factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 343-351.
    17. Vladimír Frišták & Diana Bošanská & Vladimír Turčan & Martin Pipíška & Christoph Pfeifer & Gerhard Soja, 2022. "Relevance of Pyrolysis Products Derived from Sewage Sludge for Soil Applications," Agriculture, MDPI, vol. 13(1), pages 1-14, December.
    18. Vito Horvatić & Helena Bakić Begić & Davor Romić & Marko Černe & Smiljana Goreta Ban & Monika Zovko & Marija Romić, 2021. "Evaluation of Land Potential for Use of Biosolids in the Coastal Mediterranean Karst Region," Land, MDPI, vol. 10(10), pages 1-22, October.
    19. Zhai, Yunbo & Peng, Chuan & Xu, Bibo & Wang, Tengfei & Li, Caiting & Zeng, Guangming & Zhu, Yun, 2017. "Hydrothermal carbonisation of sewage sludge for char production with different waste biomass: Effects of reaction temperature and energy recycling," Energy, Elsevier, vol. 127(C), pages 167-174.
    20. Wu, Junnan & Liao, Yanfen & Lin, Yan & Tian, Yunlong & Ma, Xiaoqian, 2019. "Study on thermal decomposition kinetics model of sewage sludge and wheat based on multi distributed activation energy," Energy, Elsevier, vol. 185(C), pages 795-803.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14620-:d:1255941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.