IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp1883-1889.html
   My bibliography  Save this article

Predictions of energy recovery from hydrochar generated from the hydrothermal carbonization of organic wastes

Author

Listed:
  • Li, Liang
  • Flora, Joseph R.V.
  • Berge, Nicole D.

Abstract

Hydrothermal carbonization (HTC) is a wet, low temperature thermal conversion process that continues to gain significant attention for the sustainable generation of value-added solid, liquid, and gas products from organic waste streams. Although it is well documented that both waste properties (e.g., elemental composition) and carbonization process conditions influence hydrochar properties, their specific influence on the total energy that can be recovered using HTC remains unclear. Non-linear random forest models were developed based on data collected from HTC-related literature to describe hydrochar yield and energy content, both of which are required to determine the total energy recovered in the hydrochar. Results indicate that total recoverable energy from organic wastes using HTC is correlated with feedstock carbon content; overall, the total energy content for feedstocks with carbon contents ranging from approximately 40 - 48% are similar. In addition, the total energy that can be recovered from the feedstock remains fairly constant when the initial solids concentrations are greater than 20%. Reaction time appears to have little influence on total recoverable energy from each feedstock at reaction times greater than approximately 150 min, while increases in reaction temperature result in a slight decline in total recoverable energy because of decreases in hydrochar yields at higher temperatures.

Suggested Citation

  • Li, Liang & Flora, Joseph R.V. & Berge, Nicole D., 2020. "Predictions of energy recovery from hydrochar generated from the hydrothermal carbonization of organic wastes," Renewable Energy, Elsevier, vol. 145(C), pages 1883-1889.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:1883-1889
    DOI: 10.1016/j.renene.2019.07.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119311231
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.07.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jie & Pan, Lanjia & Suvarna, Manu & Tong, Yen Wah & Wang, Xiaonan, 2020. "Fuel properties of hydrochar and pyrochar: Prediction and exploration with machine learning," Applied Energy, Elsevier, vol. 269(C).
    2. Śliz, Maciej & Wilk, Małgorzata, 2020. "A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow," Renewable Energy, Elsevier, vol. 156(C), pages 942-950.
    3. Djandja, Oraléou Sangué & Salami, Adekunlé Akim & Wang, Zhi-Cong & Duo, Jia & Yin, Lin-Xin & Duan, Pei-Gao, 2022. "Random forest-based modeling for insights on phosphorus content in hydrochar produced from hydrothermal carbonization of sewage sludge," Energy, Elsevier, vol. 245(C).
    4. Wilk, Małgorzata & Śliz, Maciej & Lubieniecki, Bogusław, 2021. "Hydrothermal co-carbonization of sewage sludge and fuel additives: Combustion performance of hydrochar," Renewable Energy, Elsevier, vol. 178(C), pages 1046-1056.
    5. Aragón-Briceño, C.I. & Ross, A.B. & Camargo-Valero, M.A., 2021. "Mass and energy integration study of hydrothermal carbonization with anaerobic digestion of sewage sludge," Renewable Energy, Elsevier, vol. 167(C), pages 473-483.
    6. González-Arias, Judith & González-Castaño, Miriam & Sánchez, Marta Elena & Cara-Jiménez, Jorge & Arellano-García, Harvey, 2022. "Valorization of biomass-derived CO2 residues with Cu-MnOx catalysts for RWGS reaction," Renewable Energy, Elsevier, vol. 182(C), pages 443-451.
    7. Li, Jie & Suvarna, Manu & Pan, Lanjia & Zhao, Yingru & Wang, Xiaonan, 2021. "A hybrid data-driven and mechanistic modelling approach for hydrothermal gasification," Applied Energy, Elsevier, vol. 304(C).
    8. Aragon-Briceño, Christian & Pożarlik, Artur & Bramer, Eddy & Brem, Gerrit & Wang, Shule & Wen, Yuming & Yang, Weihong & Pawlak-Kruczek, Halina & Niedźwiecki, Łukasz & Urbanowska, Agnieszka & Mościcki,, 2022. "Integration of hydrothermal carbonization treatment for water and energy recovery from organic fraction of municipal solid waste digestate," Renewable Energy, Elsevier, vol. 184(C), pages 577-591.
    9. Wang, Ruikun & Liu, Senyang & Xue, Qiao & Lin, Kai & Yin, Qianqian & Zhao, Zhenghui, 2022. "Analysis and prediction of characteristics for solid product obtained by hydrothermal carbonization of biomass components," Renewable Energy, Elsevier, vol. 183(C), pages 575-585.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:1883-1889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.