Analysis of operation and energy performance of a heat pump driven by a PV system for space heating of a single family house in polish conditions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2020.11.026
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Browne, M.C. & Norton, B. & McCormack, S.J., 2015. "Phase change materials for photovoltaic thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 762-782.
- Chwieduk, Dorota A., 2017. "Towards modern options of energy conservation in buildings," Renewable Energy, Elsevier, vol. 101(C), pages 1194-1202.
- Annunziata, Eleonora & Frey, Marco & Rizzi, Francesco, 2013. "Towards nearly zero-energy buildings: The state-of-art of national regulations in Europe," Energy, Elsevier, vol. 57(C), pages 125-133.
- Chwieduk, Dorota, 1996. "Analysis of utilisation of renewable energies as heat sources for heat pumps in building sector in Poland," Renewable Energy, Elsevier, vol. 9(1), pages 720-723.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Waldemar Izdebski & Katarzyna Kosiorek, 2023. "Analysis and Evaluation of the Possibility of Electricity Production from Small Photovoltaic Installations in Poland," Energies, MDPI, vol. 16(2), pages 1-19, January.
- Dorota Chwieduk & Bartosz Chwieduk, 2023. "Application of Heat Pumps in New Housing Estates in Cities Suburbs as an Means of Energy Transformation in Poland," Energies, MDPI, vol. 16(8), pages 1-19, April.
- Qu, Minglu & Yan, Xufeng & Wang, Haiyang & Hei, Yingxiao & Liu, Hongzhi & Li, Zhao, 2022. "Energy, exergy, economic and environmental analysis of photovoltaic/thermal integrated water source heat pump water heater," Renewable Energy, Elsevier, vol. 194(C), pages 1084-1097.
- Zhao, Anjun & Jiao, Yang & Quan, Wei & Chen, Yiren, 2024. "Net zero carbon rural integrated energy system design optimization based on the energy demand in temporal and spatial dimensions," Renewable Energy, Elsevier, vol. 222(C).
- Gao, Datong & Kwan, Trevor Hocksun & Hu, Maobin & Pei, Gang, 2022. "The energy, exergy, and techno-economic analysis of a solar seasonal residual energy utilization system," Energy, Elsevier, vol. 248(C).
- Hosseinnia, Seyed Mojtaba & Sorin, Mikhail, 2022. "Energy targeting approach for optimum solar assisted ground source heat pump integration in buildings," Energy, Elsevier, vol. 248(C).
- Josué F. Rosales-Pérez & Andrés Villarruel-Jaramillo & José A. Romero-Ramos & Manuel Pérez-García & José M. Cardemil & Rodrigo Escobar, 2023. "Hybrid System of Photovoltaic and Solar Thermal Technologies for Industrial Process Heat," Energies, MDPI, vol. 16(5), pages 1-45, February.
- Jacek Kasperski & Anna Bać & Oluwafunmilola Oladipo, 2023. "A Simulation of a Sustainable Plus-Energy House in Poland Equipped with a Photovoltaic Powered Seasonal Thermal Storage System," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Caliskan, Hakan, 2015. "Thermodynamic and environmental analyses of biomass, solar and electrical energy options based building heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1016-1034.
- Cinzia Buratti & Francesco Asdrubali & Domenico Palladino & Antonella Rotili, 2015. "Energy Performance Database of Building Heritage in the Region of Umbria, Central Italy," Energies, MDPI, vol. 8(7), pages 1-18, July.
- Sharifzadeh, Esmail & Rahimi, Masoud & Azimi, Neda & Abolhasani, Mahdieh, 2024. "Thermal management of photovoltaic panels using phase change materials and hierarchical ZnO/expanded graphite nanofillers," Energy, Elsevier, vol. 306(C).
- Olsthoorn, Mark & Schleich, Joachim & Faure, Corinne, 2019.
"Exploring the diffusion of low-energy houses: An empirical study in the European Union,"
Energy Policy, Elsevier, vol. 129(C), pages 1382-1393.
- Olsthoorn, Mark & Schleich, Joachim & Faure, Corinne, 2018. "Exploring the diffusion of low energy houses: An empirical study in the European Union," Working Papers "Sustainability and Innovation" S16/2018, Fraunhofer Institute for Systems and Innovation Research (ISI).
- Piccardo, C. & Dodoo, A. & Gustavsson, L. & Tettey, U.Y.A., 2020. "Retrofitting with different building materials: Life-cycle primary energy implications," Energy, Elsevier, vol. 192(C).
- Gilmore, Nicholas & Timchenko, Victoria & Menictas, Chris, 2018. "Microchannel cooling of concentrator photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1041-1059.
- Seungjun Roh & Sungho Tae & Rakhyun Kim, 2018. "Analysis of Embodied Environmental Impacts of Korean Apartment Buildings Considering Major Building Materials," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
- Dorota Chwieduk & Bartosz Chwieduk, 2023. "Application of Heat Pumps in New Housing Estates in Cities Suburbs as an Means of Energy Transformation in Poland," Energies, MDPI, vol. 16(8), pages 1-19, April.
- Amjad Ali & Marc Audi & Ismail Senturk & Yannick Roussel, 2022.
"Do Sectoral Growth Promote CO2 Emissions in Pakistan? Time Series Analysis in Presence of Structural Break,"
International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 410-425, March.
- Ali, Amjad & Audi, Marc & ŞENTÜRK, İsmail & Roussel, Yannick, 2021. "Do Sectoral Growth Promote CO2 Emissions in Pakistan? Time Series Analysis in Presence of Structural Break," MPRA Paper 111215, University Library of Munich, Germany.
- Fabio Magrassi & Adriana Del Borghi & Michela Gallo & Carlo Strazza & Michela Robba, 2016. "Optimal Planning of Sustainable Buildings: Integration of Life Cycle Assessment and Optimization in a Decision Support System (DSS)," Energies, MDPI, vol. 9(7), pages 1-15, June.
- Gliedt, Travis & Hoicka, Christina E., 2015. "Energy upgrades as financial or strategic investment? Energy Star property owners and managers improving building energy performance," Applied Energy, Elsevier, vol. 147(C), pages 430-443.
- Isaza, Alejandra & Kay, Merlinde & Evans, Jason P. & Prasad, Abhnil & Bremner, Stephen, 2023. "Maximizing photovoltaic potential and minimizing costs in a future warmer climate: The role of atmospheric aerosols and greenhouse gas emissions," Renewable Energy, Elsevier, vol. 219(P2).
- Fabrizio Battisti & Orazio Campo, 2021. "The Assessment of Density Bonus in Building Renovation Interventions. The Case of the City of Florence in Italy," Land, MDPI, vol. 10(12), pages 1-21, December.
- Olivieri, L. & Caamaño-Martín, E. & Moralejo-Vázquez, F.J. & Martín-Chivelet, N. & Olivieri, F. & Neila-Gonzalez, F.J., 2014. "Energy saving potential of semi-transparent photovoltaic elements for building integration," Energy, Elsevier, vol. 76(C), pages 572-583.
- Walsh, Angélica & Cóstola, Daniel & Labaki, Lucila Chebel, 2022. "Performance-based climatic zoning method for building energy efficiency applications using cluster analysis," Energy, Elsevier, vol. 255(C).
- Hassan A. Sleiman & Steffen Hempel & Roberto Traversari & Sander Bruinenberg, 2017. "An Assisted Workflow for the Early Design of Nearly Zero Emission Healthcare Buildings," Energies, MDPI, vol. 10(7), pages 1-26, July.
- Chung, Mo & Park, Hwa-Choon, 2015. "Comparison of building energy demand for hotels, hospitals, and offices in Korea," Energy, Elsevier, vol. 92(P3), pages 383-393.
- Karthick, A. & Murugavel, K. Kalidasa & Ramanan, P., 2018. "Performance enhancement of a building-integrated photovoltaic module using phase change material," Energy, Elsevier, vol. 142(C), pages 803-812.
- Vasileios Kapsalis & Grigorios Kyriakopoulos & Miltiadis Zamparas & Athanasios Tolis, 2021. "Investigation of the Photon to Charge Conversion and Its Implication on Photovoltaic Cell Efficient Operation," Energies, MDPI, vol. 14(11), pages 1-16, May.
- Yu, Sha & Eom, Jiyong & Zhou, Yuyu & Evans, Meredydd & Clarke, Leon, 2014. "Scenarios of building energy demand for China with a detailed regional representation," Energy, Elsevier, vol. 67(C), pages 284-297.
More about this item
Keywords
Ground source heat pumps; Solar low energy house; PV driven heat pump; Energy performance of buildings; Primary energy consumption indices;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:165:y:2021:i:p2:p:117-126. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.