IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v101y2017icp1194-1202.html
   My bibliography  Save this article

Towards modern options of energy conservation in buildings

Author

Listed:
  • Chwieduk, Dorota A.

Abstract

Looking at modern options of energy conservation in buildings it is necessary to assure energy efficiency first. When the energy load of a building is highly decreased, then innovative options of energy conservation can be introduced. The background and development of the main modern methods for the reduction of energy needs, final and primary energy consumption are analyzed. Differentiation between options for existing and newly constructed buildings is pointed out. Modern options of energy conservation in buildings are focused on innovative architecture, shape, structure, materials of a building and of course systems utilizing renewable energy. A very simple way of reducing building energy needs is the utilization of solar energy in a passive, but planned way. A specific shape of solar buffer space should be created in the building. In high latitude countries the buffer space should be of a specific design containing two cuboid sub-spaces with specific internal overhang and a well-planned extension of the south glazed facade. The paper presents modern renewable energy technologies as technologies with roots in past ideas of using the environment in an effective way. It underlines that future innovative and efficient building technologies will use building integrated renewable, mainly solar technologies.

Suggested Citation

  • Chwieduk, Dorota A., 2017. "Towards modern options of energy conservation in buildings," Renewable Energy, Elsevier, vol. 101(C), pages 1194-1202.
  • Handle: RePEc:eee:renene:v:101:y:2017:i:c:p:1194-1202
    DOI: 10.1016/j.renene.2016.09.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116308515
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.09.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sen, Rohit & Bhattacharyya, Subhes C., 2014. "Off-grid electricity generation with renewable energy technologies in India: An application of HOMER," Renewable Energy, Elsevier, vol. 62(C), pages 388-398.
    2. Kuznik, Frédéric & David, Damien & Johannes, Kevyn & Roux, Jean-Jacques, 2011. "A review on phase change materials integrated in building walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 379-391, January.
    3. Ochoa, Carlos E. & Capeluto, I. Guedi, 2015. "Decision methodology for the development of an expert system applied in an adaptable energy retrofit façade system for residential buildings," Renewable Energy, Elsevier, vol. 78(C), pages 498-508.
    4. Yao, Runming & Li, Baizhan & Steemers, Koen, 2005. "Energy policy and standard for built environment in China," Renewable Energy, Elsevier, vol. 30(13), pages 1973-1988.
    5. Islam, A.K.M. Sadrul & Islam, Mazharul & Rahman, Tazmilur, 2006. "Effective renewable energy activities in Bangladesh," Renewable Energy, Elsevier, vol. 31(5), pages 677-688.
    6. Alam, M. & Singh, H. & Limbachiya, M.C., 2011. "Vacuum Insulation Panels (VIPs) for building construction industry – A review of the contemporary developments and future directions," Applied Energy, Elsevier, vol. 88(11), pages 3592-3602.
    7. Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
    8. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2008. "Feasibility analysis of stand-alone renewable energy supply options for a large hotel," Renewable Energy, Elsevier, vol. 33(7), pages 1475-1490.
    9. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    10. Chen, Yihui & Jiang, Ping & Dong, Wenbo & Huang, Beijia, 2015. "Analysis on the carbon trading approach in promoting sustainable buildings in China," Renewable Energy, Elsevier, vol. 84(C), pages 130-137.
    11. Akella, A.K. & Saini, R.P. & Sharma, M.P., 2009. "Social, economical and environmental impacts of renewable energy systems," Renewable Energy, Elsevier, vol. 34(2), pages 390-396.
    12. Tyagi, Vineet Veer & Buddhi, D., 2007. "PCM thermal storage in buildings: A state of art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1146-1166, August.
    13. Darkwa, K. & O'Callaghan, P.W. & Tetlow, D., 2006. "Phase-change drywalls in a passive-solar building," Applied Energy, Elsevier, vol. 83(5), pages 425-435, May.
    14. Chwieduk, Dorota, 2003. "Towards sustainable-energy buildings," Applied Energy, Elsevier, vol. 76(1-3), pages 211-217, September.
    15. Ye, Hong & Long, Linshuang & Zhang, Haitao & Gao, Yanfeng, 2014. "The energy saving index and the performance evaluation of thermochromic windows in passive buildings," Renewable Energy, Elsevier, vol. 66(C), pages 215-221.
    16. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    17. Buonomano, Annamaria & Calise, Francesco & Ferruzzi, Gabriele & Palombo, Adolfo, 2014. "Dynamic energy performance analysis: Case study for energy efficiency retrofits of hospital buildings," Energy, Elsevier, vol. 78(C), pages 555-572.
    18. Xiang-Li, Li & Zhi-Yong, Ren & Lin, Duanmu, 2015. "An investigation on life-cycle energy consumption and carbon emissions of building space heating and cooling systems," Renewable Energy, Elsevier, vol. 84(C), pages 124-129.
    19. Li, Cheng & Hong, Tianzhen & Yan, Da, 2014. "An insight into actual energy use and its drivers in high-performance buildings," Applied Energy, Elsevier, vol. 131(C), pages 394-410.
    20. Chwieduk, Dorota A., 2013. "Dynamics of external wall structures with a PCM (phase change materials) in high latitude countries," Energy, Elsevier, vol. 59(C), pages 301-313.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gábor L. Szabó & Ferenc Kalmár, 2018. "Parametric Analysis of Buildings’ Heat Load Depending on Glazing—Hungarian Case Study," Energies, MDPI, vol. 11(12), pages 1-16, November.
    2. Fu, Xueqian & Zhang, Xiurong, 2019. "Estimation of building energy consumption using weather information derived from photovoltaic power plants," Renewable Energy, Elsevier, vol. 130(C), pages 130-138.
    3. Xueliang Yuan & Xiaoyu Zhang & Jiaxin Liang & Qingsong Wang & Jian Zuo, 2017. "The Development of Building Energy Conservation in China: A Review and Critical Assessment from the Perspective of Policy and Institutional System," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
    4. Dorota Chwieduk & Bartosz Chwieduk, 2023. "Application of Heat Pumps in New Housing Estates in Cities Suburbs as an Means of Energy Transformation in Poland," Energies, MDPI, vol. 16(8), pages 1-19, April.
    5. Crespi, Giulia & Becchio, Cristina & Corgnati, Stefano Paolo, 2021. "Towards Post-Carbon Cities: Which retrofit scenarios for hotels in Italy?," Renewable Energy, Elsevier, vol. 163(C), pages 950-963.
    6. Peharz, Gerhard & Berger, Karl & Kubicek, Bernhard & Aichinger, Martin & Grobbauer, Michael & Gratzer, Julia & Nemitz, Wolfgang & Großschädl, Bettina & Auer, Christine & Prietl, Christine & Waldhauser, 2017. "Application of plasmonic coloring for making building integrated PV modules comprising of green solar cells," Renewable Energy, Elsevier, vol. 109(C), pages 542-550.
    7. Jozef Švajlenka & Mária Kozlovská & Miroslav Badida & Marek Moravec & Tibor Dzuro & František Vranay, 2020. "Analysis of the Characteristics of External Walls of Wooden Prefab Cross Laminated Timber," Energies, MDPI, vol. 13(22), pages 1-14, November.
    8. Ebrahimi-Moghadam, Amir & Ildarabadi, Paria & Aliakbari, Karim & Fadaee, Faramarz, 2020. "Sensitivity analysis and multi-objective optimization of energy consumption and thermal comfort by using interior light shelves in residential buildings," Renewable Energy, Elsevier, vol. 159(C), pages 736-755.
    9. Beata Sadowska & Joanna Piotrowska-Woroniak & Grzegorz Woroniak & Wiesław Sarosiek, 2022. "Energy and Economic Efficiency of the Thermomodernization of an Educational Building and Reduction of Pollutant Emissions—A Case Study," Energies, MDPI, vol. 15(8), pages 1-31, April.
    10. Chwieduk, Bartosz & Chwieduk, Dorota, 2021. "Analysis of operation and energy performance of a heat pump driven by a PV system for space heating of a single family house in polish conditions," Renewable Energy, Elsevier, vol. 165(P2), pages 117-126.
    11. Yang, Jiangming & Wu, Huijun & Xu, Xinhua & Huang, Gongsheng & Xu, Tao & Guo, Sitong & Liang, Yuying, 2019. "Numerical and experimental study on the thermal performance of aerogel insulating panels for building energy efficiency," Renewable Energy, Elsevier, vol. 138(C), pages 445-457.
    12. Jozef Švajlenka & Mária Kozlovská & František Vranay & Terézia Pošiváková & Miroslava Jámborová, 2020. "Comparison of Laboratory and Computational Models of Selected Thermal-Technical Properties of Constructions Systems Based on Wood," Energies, MDPI, vol. 13(12), pages 1-15, June.
    13. Xie, Y. & Gilmour, M.S. & Yuan, Y. & Jin, H. & Wu, H., 2017. "A review on house design with energy saving system in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 29-52.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    2. Mavrigiannaki, A. & Ampatzi, E., 2016. "Latent heat storage in building elements: A systematic review on properties and contextual performance factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 852-866.
    3. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    4. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    5. Ali, Liaqat & Shahnia, Farhad, 2017. "Determination of an economically-suitable and sustainable standalone power system for an off-grid town in Western Australia," Renewable Energy, Elsevier, vol. 106(C), pages 243-254.
    6. El Fadel, M. & Rachid, G. & El-Samra, R. & Bou Boutros, G. & Hashisho, J., 2013. "Emissions reduction and economic implications of renewable energy market penetration of power generation for residential consumption in the MENA region," Energy Policy, Elsevier, vol. 52(C), pages 618-627.
    7. Soares, N. & Santos, P. & Gervásio, H. & Costa, J.J. & Simões da Silva, L., 2017. "Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 194-209.
    8. Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
    9. Behnam Zakeri & Samuli Rinne & Sanna Syri, 2015. "Wind Integration into Energy Systems with a High Share of Nuclear Power—What Are the Compromises?," Energies, MDPI, vol. 8(4), pages 1-35, March.
    10. Ye, Bin & Yang, Peng & Jiang, Jingjing & Miao, Lixin & Shen, Bo & Li, Ji, 2017. "Feasibility and economic analysis of a renewable energy powered special town in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 40-50.
    11. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    12. Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2015. "Long term outlook of primary energy consumption of the Italian thermoelectric sector: Impact of fuel and carbon prices," Energy, Elsevier, vol. 87(C), pages 153-164.
    13. Borderon, Julien & Virgone, Joseph & Cantin, Richard, 2015. "Modeling and simulation of a phase change material system for improving summer comfort in domestic residence," Applied Energy, Elsevier, vol. 140(C), pages 288-296.
    14. Fernandes, Liliana & Ferreira, Paula, 2014. "Renewable energy scenarios in the Portuguese electricity system," Energy, Elsevier, vol. 69(C), pages 51-57.
    15. Upadhyay, Subho & Sharma, M.P., 2016. "Selection of a suitable energy management strategy for a hybrid energy system in a remote rural area of India," Energy, Elsevier, vol. 94(C), pages 352-366.
    16. Krajacic, Goran & Duic, Neven & Carvalho, Maria da Graça, 2011. "How to achieve a 100% RES electricity supply for Portugal?," Applied Energy, Elsevier, vol. 88(2), pages 508-517, February.
    17. Dai, Hancheng & Fujimori, Shinichiro & Silva Herran, Diego & Shiraki, Hiroto & Masui, Toshihiko & Matsuoka, Yuzuru, 2017. "The impacts on climate mitigation costs of considering curtailment and storage of variable renewable energy in a general equilibrium model," Energy Economics, Elsevier, vol. 64(C), pages 627-637.
    18. Ma, Tao & Østergaard, Poul Alberg & Lund, Henrik & Yang, Hongxing & Lu, Lin, 2014. "An energy system model for Hong Kong in 2020," Energy, Elsevier, vol. 68(C), pages 301-310.
    19. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    20. Lund, Henrik & Hvelplund, Frede, 2012. "The economic crisis and sustainable development: The design of job creation strategies by use of concrete institutional economics," Energy, Elsevier, vol. 43(1), pages 192-200.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:101:y:2017:i:c:p:1194-1202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.