IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v206y2023icp418-427.html
   My bibliography  Save this article

Thermodynamic investigation of a direct-expansion solar assisted heat pump with evacuated tube collector-evaporator

Author

Listed:
  • Yu, Xiaohui
  • Guo, Zhonglian
  • Gao, Zhi
  • Yang, Bin
  • Ma, Xiuqin
  • Dong, Shengming

Abstract

Direct-expansion solar-assisted heat pump (DX-SAHP) system has proven to be an effective energy-saving application. In view of the low output temperature and large radiant heat loss in the conventional flat plate type DX-SAHP, this paper proposed an evacuated tube type DX-SAHP system to realize performance enhancement. Then, an experimental prototype of the proposed system was originally designed and constructed in laboratory. Moreover, the thermodynamic performance of the system was thoroughly investigated and analyzed under different operating conditions. The results indicate that the thermodynamic performance of the proposed system is sensitive to the solar radiation intensity and collector area. About every 100 W m−2 increase of solar radiation intensity, the COP increases nearly 1.70% and the heat collection efficiency decreases nearly 8.44%. Increasing collector area (from 1.5 m2 to 3 m2) results in 8.81% increase of COP and 22.47% reduction of the system exergy efficiency. A higher circulating water temperature can effectively improve its exergy performance and higher ambient temperature can enhance its energetic performance. Additionally, the optimization of the evacuated tube collector-evaporator should be preferential to improve the system due to large exergy destruction and low exergy efficiency.

Suggested Citation

  • Yu, Xiaohui & Guo, Zhonglian & Gao, Zhi & Yang, Bin & Ma, Xiuqin & Dong, Shengming, 2023. "Thermodynamic investigation of a direct-expansion solar assisted heat pump with evacuated tube collector-evaporator," Renewable Energy, Elsevier, vol. 206(C), pages 418-427.
  • Handle: RePEc:eee:renene:v:206:y:2023:i:c:p:418-427
    DOI: 10.1016/j.renene.2023.01.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123001337
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.01.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kara, Ozer & Ulgen, Koray & Hepbasli, Arif, 2008. "Exergetic assessment of direct-expansion solar-assisted heat pump systems: Review and modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1383-1401, June.
    2. Shi, Guo-Hua & Aye, Lu & Li, Dan & Du, Xian-Jun, 2019. "Recent advances in direct expansion solar assisted heat pump systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 349-366.
    3. Chow, T.T. & Pei, G. & Fong, K.F. & Lin, Z. & Chan, A.L.S. & He, M., 2010. "Modeling and application of direct-expansion solar-assisted heat pump for water heating in subtropical Hong Kong," Applied Energy, Elsevier, vol. 87(2), pages 643-649, February.
    4. Omojaro, Peter & Breitkopf, Cornelia, 2013. "Direct expansion solar assisted heat pumps: A review of applications and recent research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 33-45.
    5. Singh, Akhilesh & Sarkar, Jahar & Sahoo, Rashmi Rekha, 2020. "Experimental energy, exergy, economic and exergoeconomic analyses of batch-type solar-assisted heat pump dryer," Renewable Energy, Elsevier, vol. 156(C), pages 1107-1116.
    6. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    7. Mohanraj, M. & Jayaraj, S. & Muraleedharan, C., 2009. "Performance prediction of a direct expansion solar assisted heat pump using artificial neural networks," Applied Energy, Elsevier, vol. 86(9), pages 1442-1449, September.
    8. Li, Y.W. & Wang, R.Z. & Wu, J.Y. & Xu, Y.X., 2007. "Experimental performance analysis and optimization of a direct expansion solar-assisted heat pump water heater," Energy, Elsevier, vol. 32(8), pages 1361-1374.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abbasi, Bardia & Li, Simon & Mwesigye, Aggrey, 2024. "Energy, exergy, economic, and environmental (4E) analysis of SAHP water heaters in very cold climatic conditions," Renewable Energy, Elsevier, vol. 226(C).
    2. Liu, Zichu & Quan, Zhenhua & Zhao, Yaohua & Zhang, Wanlin & Yang, Mingguang & Shi, Junzhang & Bai, Ze, 2023. "Dynamic modelling and performance prediction of a novel direct-expansion ice thermal storage system based multichannel flat tube evaporator plus micro heat pipe arrays storage module," Renewable Energy, Elsevier, vol. 217(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omojaro, Peter & Breitkopf, Cornelia, 2013. "Direct expansion solar assisted heat pumps: A review of applications and recent research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 33-45.
    2. Buker, Mahmut Sami & Riffat, Saffa B., 2016. "Solar assisted heat pump systems for low temperature water heating applications: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 399-413.
    3. Jorge E. De León-Ruiz & Ignacio Carvajal-Mariscal, 2018. "Mathematical Thermal Modelling of a Direct-Expansion Solar-Assisted Heat Pump Using Multi-Objective Optimization Based on the Energy Demand," Energies, MDPI, vol. 11(7), pages 1-27, July.
    4. Mohamed, Elamin & Riffat, Saffa & Omer, Siddig & Zeinelabdein, Rami, 2019. "A comprehensive investigation of using mutual air and water heating in multi-functional DX-SAMHP for moderate cold climate," Renewable Energy, Elsevier, vol. 130(C), pages 582-600.
    5. Badiei, A. & Golizadeh Akhlaghi, Y. & Zhao, X. & Shittu, S. & Xiao, X. & Li, J. & Fan, Y. & Li, G., 2020. "A chronological review of advances in solar assisted heat pump technology in 21st century," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    6. Wang, Zhangyuan & Guo, Peng & Zhang, Haijing & Yang, Wansheng & Mei, Sheng, 2017. "Comprehensive review on the development of SAHP for domestic hot water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 871-881.
    7. Shi, Guo-Hua & Aye, Lu & Li, Dan & Du, Xian-Jun, 2019. "Recent advances in direct expansion solar assisted heat pump systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 349-366.
    8. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    9. Stephen Tangwe & Patrick Mukumba & Golden Makaka, 2023. "An Installed Hybrid Direct Expansion Solar Assisted Heat Pump Water Heater to Monitor and Modeled the Energy Factor of a University Students’ Accommodation," Energies, MDPI, vol. 16(3), pages 1-30, January.
    10. Cai, Jingyong & Li, Zhouhang & Ji, Jie & Zhou, Fan, 2019. "Performance analysis of a novel air source hybrid solar assisted heat pump," Renewable Energy, Elsevier, vol. 139(C), pages 1133-1145.
    11. Huang, Wenzhu & Ji, Jie & Xu, Ning & Li, Guiqiang, 2016. "Frosting characteristics and heating performance of a direct-expansion solar-assisted heat pump for space heating under frosting conditions," Applied Energy, Elsevier, vol. 171(C), pages 656-666.
    12. Zhang, Shaoliang & Liu, Shuli & Shen, Yongliang & Shukla, Ashish & Mazhar, Abdur Rehman & Chen, Tingsen, 2024. "Critical review of solar-assisted air source heat pump in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    13. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng & Li, Yunhai, 2023. "Mathematical and experimental investigation about the dual-source heat pump integrating low concentrated photovoltaic and finned-tube exchanger," Energy, Elsevier, vol. 263(PE).
    14. Jie, Ji & Jingyong, Cai & Wenzhu, Huang & Yan, Feng, 2015. "Experimental study on the performance of solar-assisted multi-functional heat pump based on enthalpy difference lab with solar simulator," Renewable Energy, Elsevier, vol. 75(C), pages 381-388.
    15. Jorge E. De León-Ruiz & Ignacio Carvajal-Mariscal & Antonin Ponsich, 2019. "Feasibility Analysis and Performance Evaluation and Optimization of a DXSAHP Water Heater Based on the Thermal Capacity of the System: A Case Study," Energies, MDPI, vol. 12(20), pages 1-38, October.
    16. Lv, Xiaolong & Yan, Gang & Yu, Jianlin, 2015. "Solar-assisted auto-cascade heat pump cycle with zeotropic mixture R32/R290 for small water heaters," Renewable Energy, Elsevier, vol. 76(C), pages 167-172.
    17. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    18. Kong, Xiangqiang & Jiang, Kailin & Dong, Shandong & Li, Ying & Li, Jianbo, 2018. "Control strategy and experimental analysis of a direct-expansion solar-assisted heat pump water heater with R134a," Energy, Elsevier, vol. 145(C), pages 17-24.
    19. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    20. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Li, Yunhai & Li, Jing & Zhao, Xudong, 2023. "Annual analysis of the photovoltaic direct-expansion heat pump assisted by double condensing equipment for secondary power generation," Renewable Energy, Elsevier, vol. 209(C), pages 169-183.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:206:y:2023:i:c:p:418-427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.