IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v163y2021icp276-287.html
   My bibliography  Save this article

Engineered hierarchical porous carbons for supercapacitor applications through chemical pretreatment and activation of biomass precursors

Author

Listed:
  • Yakaboylu, Gunes A.
  • Jiang, Changle
  • Yumak, Tugrul
  • Zondlo, John W.
  • Wang, Jingxin
  • Sabolsky, Edward M.

Abstract

For a better process and property control, the effect of chemical pretreatment time on the chemistry and electrochemical performance of activated carbons derived from Miscanthus grass biomass was examined. The microstructure, chemistry and active functional groups were controlled by tuning the pretreatment duration, which provided the removal of certain concentrations of hemicellulose and lignin, as well as, pore development at the initial stage. The optimal KOH pretreatment (12–18 h) resulted in interconnected pore structure, rich oxygen content (18–21 at.%), significant changes in their chemistry and functional groups, and a sheet-like morphology. A high specific capacitance up to 188 F/g and a high cycling stability of 85–91% retention (after 1000–2500 cycles) at 0.1 A/g were achieved. The optimization of the pretreatment time also resulted in high specific energy (8.0 W h/kg) and specific power (377 W/kg) at 0.5 A/g. The micro/mesopore volume, cellulose content, C/O ratio, and surface chemistry were identified to be major contributors to the electrochemical performance as a result of enhanced electro-adsorption, double layer formation, and rapid ion transport. This understanding creates a simple and cost-effective route for controlling the pore network and chemistry, as well as, the resultant performance of the porous activated carbon supercapacitor electrodes.

Suggested Citation

  • Yakaboylu, Gunes A. & Jiang, Changle & Yumak, Tugrul & Zondlo, John W. & Wang, Jingxin & Sabolsky, Edward M., 2021. "Engineered hierarchical porous carbons for supercapacitor applications through chemical pretreatment and activation of biomass precursors," Renewable Energy, Elsevier, vol. 163(C), pages 276-287.
  • Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:276-287
    DOI: 10.1016/j.renene.2020.08.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120313379
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.08.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yan & Song, Kuiyan, 2018. "Thermal and chemical characteristics of torrefied biomass derived from a generated volatile atmosphere," Energy, Elsevier, vol. 165(PB), pages 235-245.
    2. Pereira, Sandra C. & Maehara, Larissa & Machado, Cristina M.M. & Farinas, Cristiane S., 2016. "Physical–chemical–morphological characterization of the whole sugarcane lignocellulosic biomass used for 2G ethanol production by spectroscopy and microscopy techniques," Renewable Energy, Elsevier, vol. 87(P1), pages 607-617.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Tingting & Luo, Lu & Luo, Lingcong & Deng, Jianping & Wu, Xi & Fan, Mizi & Du, Guanben & Weigang Zhao,, 2021. "High energy density supercapacitors with hierarchical nitrogen-doped porous carbon as active material obtained from bio-waste," Renewable Energy, Elsevier, vol. 175(C), pages 760-769.
    2. Xu, Xiaodong & Sielicki, Krzysztof & Min, Jiakang & Li, Jiaxin & Hao, Chuncheng & Wen, Xin & Chen, Xuecheng & Mijowska, Ewa, 2022. "One-step converting biowaste wolfberry fruits into hierarchical porous carbon and its application for high-performance supercapacitors," Renewable Energy, Elsevier, vol. 185(C), pages 187-195.
    3. Rahimi, Mohammad & Abbaspour-Fard, Mohammad Hossein & Rohani, Abbas, 2021. "A multi-data-driven procedure towards a comprehensive understanding of the activated carbon electrodes performance (using for supercapacitor) employing ANN technique," Renewable Energy, Elsevier, vol. 180(C), pages 980-992.
    4. Teimouri, Zahra & Abatzoglou, Nicolas & Dalai, Ajay K., 2023. "Design of a renewable catalyst support derived from biomass with optimized textural features for fischer tropsch synthesis," Renewable Energy, Elsevier, vol. 202(C), pages 1096-1109.
    5. Li, Linghao & Zheng, Xiaoen & Zhang, Fan & Yu, Haipeng & Wang, Hong & Jia, Zhiwen & Sun, Yan & Jiang, Enchen & Xu, Xiwei, 2023. "Formamide hydrothermal pretreatment assisted camellia shell for upgrading to N-containing chemical and supercapacitor electrode preparation using the residue," Energy, Elsevier, vol. 265(C).
    6. Xia, Guoyan & Liu, Zhanglin & He, Jinsong & Huang, Mei & Zhao, Li & Zou, Jianmei & Lei, Yongjia & Yang, Qiulin & Liu, Yan & Tian, Dong & Shen, Fei, 2024. "Modulating three-dimensional porous carbon from paper mulberry juice by a hydrothermal process for a supercapacitor with excellent performance," Renewable Energy, Elsevier, vol. 227(C).
    7. Ozpinar, Pelin & Dogan, Ceren & Demiral, Hakan & Morali, Ugur & Erol, Salim & Samdan, Canan & Yildiz, Derya & Demiral, Ilknur, 2022. "Activated carbons prepared from hazelnut shell waste by phosphoric acid activation for supercapacitor electrode applications and comprehensive electrochemical analysis," Renewable Energy, Elsevier, vol. 189(C), pages 535-548.
    8. Dhakal, Ganesh & Mohapatra, Debananda & Kim, Young-Il & Lee, Jintae & Kim, Woo Kyoung & Shim, Jae-Jin, 2022. "High-performance supercapacitors fabricated with activated carbon derived from lotus calyx biowaste," Renewable Energy, Elsevier, vol. 189(C), pages 587-600.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sher, Farooq & Yaqoob, Aqsa & Saeed, Farrukh & Zhang, Shengfu & Jahan, Zaib & Klemeš, Jiří Jaromír, 2020. "Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation," Energy, Elsevier, vol. 209(C).
    2. Zhang, Pengchao & Hu, Hongyun & Tang, Hua & Yang, Yuhan & Liu, Huan & Lu, Qiang & Li, Xian & Worasuwannarak, Nakorn & Yao, Hong, 2019. "In-depth experimental study of pyrolysis characteristics of raw and cooking treated shrimp shell samples," Renewable Energy, Elsevier, vol. 139(C), pages 730-738.
    3. da Silva, Francinaldo Leite & de Oliveira Campos, Alan & dos Santos, Davi Alves & de Oliveira Júnior, Sérgio Dantas & de Araújo Padilha, Carlos Eduardo & de Sousa Junior, Francisco Caninde & de Macedo, 2018. "Pretreatments of Carnauba (Copernicia prunifera) straw residue for production of cellulolytic enzymes by Trichorderma reesei CCT-2768 by solid state fermentation," Renewable Energy, Elsevier, vol. 116(PA), pages 299-308.
    4. Tsai, Wen-Tien & Lin, Yu-Quan & Tsai, Chi-Hung & Chung, Mei-Hua & Chu, Ming-Hung & Huang, Hung-Ju & Jao, Ya-Hsuan & Yeh, Showin-Ing, 2020. "Conversion of water caltrop husk into torrefied biomass by torrefaction," Energy, Elsevier, vol. 195(C).
    5. Granados, D.A. & Ruiz, R.A. & Vega, L.Y. & Chejne, F., 2017. "Study of reactivity reduction in sugarcane bagasse as consequence of a torrefaction process," Energy, Elsevier, vol. 139(C), pages 818-827.
    6. Bala, Anju & Singh, Bijender, 2019. "Cellulolytic and xylanolytic enzymes of thermophiles for the production of renewable biofuels," Renewable Energy, Elsevier, vol. 136(C), pages 1231-1244.
    7. Nishu, & Li, Chong & Chai, Meiyun & Rahman, Md. Maksudur & Li, Yingkai & Sarker, Manobendro & Liu, Ronghou, 2021. "Performance of alkali and Ni-modified ZSM-5 during catalytic pyrolysis of extracted hemicellulose from rice straw for the production of aromatic hydrocarbons," Renewable Energy, Elsevier, vol. 175(C), pages 936-951.
    8. Zhang, Yan & Zhao, Zhihong & Xing, Dong & Hu, Jianpeng & Liu, Wenjing & Wang, Xue & Yao, Lihong, 2024. "Effect of inorganic salts / lignin on the combustion performance of torrefied biochar," Energy, Elsevier, vol. 293(C).
    9. Ong, Hwai Chyuan & Yu, Kai Ling & Chen, Wei-Hsin & Pillejera, Ma Katreena & Bi, Xiaotao & Tran, Khanh-Quang & Pétrissans, Anelie & Pétrissans, Mathieu, 2021. "Variation of lignocellulosic biomass structure from torrefaction: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    10. Yu Jiang & Kyeong-Hoon Park & Chung-Hwan Jeon, 2020. "Feasibility Study of Co-Firing of Torrefied Empty Fruit Bunch and Coal through Boiler Simulation," Energies, MDPI, vol. 13(12), pages 1-27, June.
    11. Korshunov, Alexey & Kichatov, Boris & Melnikova, Ksenia & Gubernov, Vladimir & Yakovenko, Ivan & Kiverin, Alexey & Golubkov, Alexandr, 2019. "Pyrolysis characteristics of biomass torrefied in a quiescent mineral layer," Energy, Elsevier, vol. 187(C).
    12. Bala, Anju & Singh, Bijender, 2019. "Development of an environmental-benign process for efficient pretreatment and saccharification of Saccharum biomasses for bioethanol production," Renewable Energy, Elsevier, vol. 130(C), pages 12-24.
    13. Arkadiusz Dyjakon & Tomasz Noszczyk, 2020. "Alternative Fuels from Forestry Biomass Residue: Torrefaction Process of Horse Chestnuts, Oak Acorns, and Spruce Cones," Energies, MDPI, vol. 13(10), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:163:y:2021:i:c:p:276-287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.