IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v165y2018ipbp235-245.html
   My bibliography  Save this article

Thermal and chemical characteristics of torrefied biomass derived from a generated volatile atmosphere

Author

Listed:
  • Zhang, Yan
  • Song, Kuiyan

Abstract

The cost of creating an inert atmosphere is one of the main expenses associated with torrefaction. For reducing the operating cost, torrefaction of poplar sawdust is conducted in a semi-closed system without an inert atmosphere. The effect of self-generated volatiles from torrefaction in a semi-closed system on mass and energy yields, HHV, elemental analysis, thermal properties, chemical structures, grindability and hydrophobicity of torrefied biomass was investigated, and then compared with torrefaction in nitrogen medium. Results show that properties of torrified biomass in a semi-closed system are almost the same as those in nitrogen medium. However, the thermal performance of torrefied biomass obtained from a semi-closed system is superior to that from nitrogen medium because of the relatively easy accessed thermal reactions, as indicated by low peak temperature in DTG. The decreased peak temperature is related to oxidized cellulose and lignin with increased contents of carboxyl, carbonyl, and ether groups in torrefied biomass obtained in the presence of generated volatiles.

Suggested Citation

  • Zhang, Yan & Song, Kuiyan, 2018. "Thermal and chemical characteristics of torrefied biomass derived from a generated volatile atmosphere," Energy, Elsevier, vol. 165(PB), pages 235-245.
  • Handle: RePEc:eee:energy:v:165:y:2018:i:pb:p:235-245
    DOI: 10.1016/j.energy.2018.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218317602
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.09.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Sang-Woo & Jang, Cheol-Hyeon, 2012. "Effects of pyrolysis temperature on changes in fuel characteristics of biomass char," Energy, Elsevier, vol. 39(1), pages 187-195.
    2. Chen, Wei-Hsin & Chen, Chih-Jung & Hung, Chen-I & Shen, Cheng-Hsien & Hsu, Heng-Wen, 2013. "A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor," Applied Energy, Elsevier, vol. 112(C), pages 421-430.
    3. Alireza Rahimi & Arne Ulbrich & Joshua J. Coon & Shannon S. Stahl, 2014. "Formic-acid-induced depolymerization of oxidized lignin to aromatics," Nature, Nature, vol. 515(7526), pages 249-252, November.
    4. Chen, Wei-Hsin & Lu, Ke-Miao & Lee, Wen-Jhy & Liu, Shih-Hsien & Lin, Ta-Chang, 2014. "Non-oxidative and oxidative torrefaction characterization and SEM observations of fibrous and ligneous biomass," Applied Energy, Elsevier, vol. 114(C), pages 104-113.
    5. Chen, Wei-Hsin & Cheng, Wen-Yi & Lu, Ke-Miao & Huang, Ying-Pin, 2011. "An evaluation on improvement of pulverized biomass property for solid fuel through torrefaction," Applied Energy, Elsevier, vol. 88(11), pages 3636-3644.
    6. Li, Hui & Liu, Xinhua & Legros, Robert & Bi, Xiaotao T. & Jim Lim, C. & Sokhansanj, Shahab, 2012. "Pelletization of torrefied sawdust and properties of torrefied pellets," Applied Energy, Elsevier, vol. 93(C), pages 680-685.
    7. Chen, Wei-Hsin & Lu, Ke-Miao & Tsai, Chi-Ming, 2012. "An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction," Applied Energy, Elsevier, vol. 100(C), pages 318-325.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yakaboylu, Gunes A. & Jiang, Changle & Yumak, Tugrul & Zondlo, John W. & Wang, Jingxin & Sabolsky, Edward M., 2021. "Engineered hierarchical porous carbons for supercapacitor applications through chemical pretreatment and activation of biomass precursors," Renewable Energy, Elsevier, vol. 163(C), pages 276-287.
    2. Zhang, Yan & Zhao, Zhihong & Xing, Dong & Hu, Jianpeng & Liu, Wenjing & Wang, Xue & Yao, Lihong, 2024. "Effect of inorganic salts / lignin on the combustion performance of torrefied biochar," Energy, Elsevier, vol. 293(C).
    3. Arkadiusz Dyjakon & Tomasz Noszczyk, 2020. "Alternative Fuels from Forestry Biomass Residue: Torrefaction Process of Horse Chestnuts, Oak Acorns, and Spruce Cones," Energies, MDPI, vol. 13(10), pages 1-19, May.
    4. Chen, Wei-Hsin & Felix, Charles B., 2024. "Thermo-kinetics study of microalgal biomass in oxidative torrefaction followed by machine learning regression and classification approaches," Energy, Elsevier, vol. 301(C).
    5. Ong, Hwai Chyuan & Yu, Kai Ling & Chen, Wei-Hsin & Pillejera, Ma Katreena & Bi, Xiaotao & Tran, Khanh-Quang & Pétrissans, Anelie & Pétrissans, Mathieu, 2021. "Variation of lignocellulosic biomass structure from torrefaction: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Yu Jiang & Kyeong-Hoon Park & Chung-Hwan Jeon, 2020. "Feasibility Study of Co-Firing of Torrefied Empty Fruit Bunch and Coal through Boiler Simulation," Energies, MDPI, vol. 13(12), pages 1-27, June.
    7. Sher, Farooq & Yaqoob, Aqsa & Saeed, Farrukh & Zhang, Shengfu & Jahan, Zaib & Klemeš, Jiří Jaromír, 2020. "Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation," Energy, Elsevier, vol. 209(C).
    8. Tsai, Wen-Tien & Lin, Yu-Quan & Tsai, Chi-Hung & Chung, Mei-Hua & Chu, Ming-Hung & Huang, Hung-Ju & Jao, Ya-Hsuan & Yeh, Showin-Ing, 2020. "Conversion of water caltrop husk into torrefied biomass by torrefaction," Energy, Elsevier, vol. 195(C).
    9. Korshunov, Alexey & Kichatov, Boris & Melnikova, Ksenia & Gubernov, Vladimir & Yakovenko, Ivan & Kiverin, Alexey & Golubkov, Alexandr, 2019. "Pyrolysis characteristics of biomass torrefied in a quiescent mineral layer," Energy, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    2. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    3. Ghiasi, Bahman & Kumar, Linoj & Furubayashi, Takaaki & Lim, C. Jim & Bi, Xiaotao & Kim, Chang Soo & Sokhansanj, Shahab, 2014. "Densified biocoal from woodchips: Is it better to do torrefaction before or after densification?," Applied Energy, Elsevier, vol. 134(C), pages 133-142.
    4. Chen, Wei-Hsin & Liu, Shih-Hsien & Juang, Tarng-Tzuen & Tsai, Chi-Ming & Zhuang, Yi-Qing, 2015. "Characterization of solid and liquid products from bamboo torrefaction," Applied Energy, Elsevier, vol. 160(C), pages 829-835.
    5. Jau-Jang Lu & Wei-Hsin Chen, 2013. "Product Yields and Characteristics of Corncob Waste under Various Torrefaction Atmospheres," Energies, MDPI, vol. 7(1), pages 1-15, December.
    6. Li, Shu-Xian & Zou, Jin-Ying & Li, Ming-Fei & Wu, Xiao-Fei & Bian, Jing & Xue, Zhi-Min, 2017. "Structural and thermal properties of Populus tomentosa during carbon dioxide torrefaction," Energy, Elsevier, vol. 124(C), pages 321-329.
    7. Lu, Ke-Miao & Lee, Wen-Jhy & Chen, Wei-Hsin & Lin, Ta-Chang, 2013. "Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends," Applied Energy, Elsevier, vol. 105(C), pages 57-65.
    8. Peng Liu & Panpan Lang & Ailing Lu & Yanling Li & Xueqin Li & Tanglei Sun & Yantao Yang & Hui Li & Tingzhou Lei, 2022. "Effect of Evolution of Carbon Structure during Torrefaction in Woody Biomass on Thermal Degradation," IJERPH, MDPI, vol. 19(24), pages 1-11, December.
    9. Tran, Khanh-Quang & Luo, Xun & Seisenbaeva, Gulaim & Jirjis, Raida, 2013. "Stump torrefaction for bioenergy application," Applied Energy, Elsevier, vol. 112(C), pages 539-546.
    10. Chen, Wei-Hsin & Chen, Chih-Jung & Hung, Chen-I & Shen, Cheng-Hsien & Hsu, Heng-Wen, 2013. "A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor," Applied Energy, Elsevier, vol. 112(C), pages 421-430.
    11. María Pilar González-Vázquez & Roberto García & Covadonga Pevida & Fernando Rubiera, 2017. "Optimization of a Bubbling Fluidized Bed Plant for Low-Temperature Gasification of Biomass," Energies, MDPI, vol. 10(3), pages 1-16, March.
    12. Nguyen, Nhut M. & Alobaid, Falah & May, Jan & Peters, Jens & Epple, Bernd, 2020. "Experimental study on steam gasification of torrefied woodchips in a bubbling fluidized bed reactor," Energy, Elsevier, vol. 202(C).
    13. Chen, Ying-Chu & Jhou, Sih-Yu, 2020. "Integrating spent coffee grounds and silver skin as biofuels using torrefaction," Renewable Energy, Elsevier, vol. 148(C), pages 275-283.
    14. Chen, Yun-Chun & Chen, Wei-Hsin & Lin, Bo-Jhih & Chang, Jo-Shu & Ong, Hwai Chyuan, 2016. "Impact of torrefaction on the composition, structure and reactivity of a microalga residue," Applied Energy, Elsevier, vol. 181(C), pages 110-119.
    15. Barskov, Stan & Zappi, Mark & Buchireddy, Prashanth & Dufreche, Stephen & Guillory, John & Gang, Daniel & Hernandez, Rafael & Bajpai, Rakesh & Baudier, Jeff & Cooper, Robbyn & Sharp, Richard, 2019. "Torrefaction of biomass: A review of production methods for biocoal from cultured and waste lignocellulosic feedstocks," Renewable Energy, Elsevier, vol. 142(C), pages 624-642.
    16. Wilk, Małgorzata & Magdziarz, Aneta & Kalemba, Izabela, 2015. "Characterisation of renewable fuels' torrefaction process with different instrumental techniques," Energy, Elsevier, vol. 87(C), pages 259-269.
    17. Wilk, Małgorzata & Magdziarz, Aneta & Kalemba, Izabela & Gara, Paweł, 2016. "Carbonisation of wood residue into charcoal during low temperature process," Renewable Energy, Elsevier, vol. 85(C), pages 507-513.
    18. Zhang, Congyu & Ho, Shih-Hsin & Chen, Wei-Hsin & Xie, Youping & Liu, Zhenquan & Chang, Jo-Shu, 2018. "Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index," Applied Energy, Elsevier, vol. 220(C), pages 598-604.
    19. Zhang, Congyu & Ho, Shih-Hsin & Chen, Wei-Hsin & Fu, Yujie & Chang, Jo-Shu & Bi, Xiaotao, 2019. "Oxidative torrefaction of biomass nutshells: Evaluations of energy efficiency as well as biochar transportation and storage," Applied Energy, Elsevier, vol. 235(C), pages 428-441.
    20. Chen, Wei-Hsin & Huang, Ming-Yueh & Chang, Jo-Shu & Chen, Chun-Yen, 2015. "Torrefaction operation and optimization of microalga residue for energy densification and utilization," Applied Energy, Elsevier, vol. 154(C), pages 622-630.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:165:y:2018:i:pb:p:235-245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.