IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v175y2023ip1s0960077923008731.html
   My bibliography  Save this article

A novel adaptive multi-scale Rényi transfer entropy based on kernel density estimation

Author

Listed:
  • Zhang, Jinren
  • Cao, Jinde
  • Wu, Tao
  • Huang, Wei
  • Ma, Tao
  • Zhou, Xinye

Abstract

The utilization of Rényi Transfer Entropy (RTE) as a powerful model for analyzing causal relationships among variables has become pervasive in the field of complex systems time series causality detection. However, there are two major challenges in using RTE: the inherent multilevel structure of causal associations in the systems, and the precision in RTE estimation. To address these challenges, this paper proposes an adaptive multi-scale Rényi transfer entropy based on kernel density estimation. The framework of causal detection based on the novel RTE consists of two parts: adaptive discrete wavelet transform (ADWT)-based time series decomposition and multivariate kernel density estimation (MKDE)-based causality network generation. In the ADWT-based time series decomposition, the original series are decomposed into different frequency bands by optimal wavelet coefficients, which is generated adaptively by an auto-encoder. In the MKDE-based causality network generation, the causal network between the variables is represented by an adjacency matrix composed of their decomposition components in each layer, and the values of the matrix are the RTE values between the variables. In order to accurate estimation of RTE values an evaluation criterion for KDE under a uniform measure in both univariate and multivariate cases and the optimal bandwidth selection is provided in this part. To validate the effectiveness of the novel causal measure in this paper, the proposed method is tested on the synthetic and real data, and the results show that it can effectively detect causal relationships among variables at different levels in non-stationary time series of both bidirectional and undirectional complex systems. Compared to the other RTE estimators, the proposed method can detect the causality accurately and avoid the spurious causality.

Suggested Citation

  • Zhang, Jinren & Cao, Jinde & Wu, Tao & Huang, Wei & Ma, Tao & Zhou, Xinye, 2023. "A novel adaptive multi-scale Rényi transfer entropy based on kernel density estimation," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
  • Handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923008731
    DOI: 10.1016/j.chaos.2023.113972
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923008731
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113972?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimpfl Thomas & Peter Franziska Julia, 2013. "Using transfer entropy to measure information flows between financial markets," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(1), pages 85-102, February.
    2. Kee-Hong Bae & G. Andrew Karolyi & René M. Stulz, 2003. "A New Approach to Measuring Financial Contagion," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 717-763, July.
    3. He, Jiayi & Shang, Pengjian, 2017. "Comparison of transfer entropy methods for financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 772-785.
    4. Bossman, Ahmed & Umar, Zaghum & Agyei, Samuel Kwaku & Junior, Peterson Owusu, 2022. "A new ICEEMDAN-based transfer entropy quantifying information flow between real estate and policy uncertainty," Research in Economics, Elsevier, vol. 76(3), pages 189-205.
    5. Sensoy, Ahmet & Sobaci, Cihat & Sensoy, Sadri & Alali, Fatih, 2014. "Effective transfer entropy approach to information flow between exchange rates and stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 180-185.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Banerjee, Ameet Kumar & Akhtaruzzaman, Md & Dionisio, Andreia & Almeida, Dora & Sensoy, Ahmet, 2022. "Nonlinear nexus between cryptocurrency returns and COVID-19 news sentiment," Journal of Behavioral and Experimental Finance, Elsevier, vol. 36(C).
    2. Dimpfl, Thomas & Peter, Franziska J., 2014. "The impact of the financial crisis on transatlantic information flows: An intraday analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 31(C), pages 1-13.
    3. Assaf, Ata & Mokni, Khaled & Youssef, Manel, 2023. "COVID-19 and information flow between cryptocurrencies, and conventional financial assets," The Quarterly Review of Economics and Finance, Elsevier, vol. 89(C), pages 73-81.
    4. Kuang, Peng-Cheng, 2021. "Measuring information flow among international stock markets: An approach of entropy-based networks on multi time-scales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    5. Yi, Eojin & Cho, Yerim & Sohn, Sungbin & Ahn, Kwangwon, 2021. "After the Splits: Information Flow between Bitcoin and Bitcoin Family," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Nie, Chun-Xiao, 2023. "Time-varying characteristics of information flow networks in the Chinese market: An analysis based on sector indices," Finance Research Letters, Elsevier, vol. 54(C).
    7. Leonidas Sandoval Junior & Asher Mullokandov & Dror Y. Kenett, 2015. "Dependency Relations among International Stock Market Indices," JRFM, MDPI, vol. 8(2), pages 1-39, May.
    8. Xie, Wen-Jie & Yong, Yang & Wei, Na & Yue, Peng & Zhou, Wei-Xing, 2021. "Identifying states of global financial market based on information flow network motifs," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    9. Nicoló Andrea Caserini & Paolo Pagnottoni, 2022. "Effective transfer entropy to measure information flows in credit markets," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 729-757, October.
    10. Ferreira, Paulo & Almeida, Dora & Dionísio, Andreia & Bouri, Elie & Quintino, Derick, 2022. "Energy markets – Who are the influencers?," Energy, Elsevier, vol. 239(PA).
    11. Choi, Insu & Lee, Myounggu & Kim, Hyejin & Kim, Woo Chang, 2023. "Elucidating Directed Statistical Dependencies: Investigating Global Financial Market Indices' Influence on Korean Short Selling Activities," Pacific-Basin Finance Journal, Elsevier, vol. 79(C).
    12. Assaf, Ata & Bilgin, Mehmet Huseyin & Demir, Ender, 2022. "Using transfer entropy to measure information flows between cryptocurrencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    13. Harding, Don & Pagan, Adrian, 2011. "An Econometric Analysis of Some Models for Constructed Binary Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 86-95.
    14. Claeys, Peter & Vašíček, Bořek, 2014. "Measuring bilateral spillover and testing contagion on sovereign bond markets in Europe," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 151-165.
    15. Abu S. Amin & Lucjan T. Orlowski, 2014. "Returns, Volatilities, and Correlations Across Mature, Regional, and Frontier Markets: Evidence from South Asia," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 50(3), pages 5-27, May.
    16. Suk-Joong Kim, 2018. "The Spillover Effects of US and Japanese Public Information News in Advanced Asia-Pacific Stock Markets," World Scientific Book Chapters, in: Information Spillovers and Market Integration in International Finance Empirical Analyses, chapter 6, pages 175-201, World Scientific Publishing Co. Pte. Ltd..
    17. Christiansen, Charlotte & Ranaldo, Angelo, 2009. "Extreme coexceedances in new EU member states' stock markets," Journal of Banking & Finance, Elsevier, vol. 33(6), pages 1048-1057, June.
    18. Harvey, A., 2008. "Dynamic distributions and changing copulas," Cambridge Working Papers in Economics 0839, Faculty of Economics, University of Cambridge.
    19. Barunik, Jozef & Krehlik, Tomas, 2016. "Measuring the frequency dynamics of financial and macroeconomic connectedness," FinMaP-Working Papers 54, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    20. Pais, Amelia & Stork, Philip A., 2011. "Contagion risk in the Australian banking and property sectors," Journal of Banking & Finance, Elsevier, vol. 35(3), pages 681-697, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923008731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.