IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i12p3558-3565.html
   My bibliography  Save this article

Estimating the power potential of tidal currents and the impact of power extraction on flow speeds

Author

Listed:
  • Vennell, Ross

Abstract

A simple method for estimating the potential of currents in tidal channels to produce power is presented. The method only requires measurement of the peak tidal volume transport through the channel without turbines, along with a bottom drag coefficient and the channel’s dimensions. A recent existing method for estimating potential requires measurements of the undisturbed transport as well as water levels at both ends of the channel to give the head loss. The adaptation of the existing method presented here exploits analytic solutions for the transport and optimal farm drag coefficient and does not require measurement of the head loss. The equations presented allow both the channel’s potential and the flow reduction due to power extraction to be estimated using a calculator. Thus the presented method has much of the ease of use of the older KE flux method, but is more reliable as it includes retardation of the flow by the turbines. The presented method can be used for the initial assessment of channels to determine if the additional measurements required to use the existing method are warranted. It can also be used where the headloss in the channel is too small to measure reliably. The presented equations enable the maximum power available to be simply traded off against environmentally acceptable flow speed reduction. The presented method is applied to two example channels. Cook Strait NZ has an estimated potential of 15GW, while the entrance channel to Kaipara Harbour has a potential between 110MW and 240MW.

Suggested Citation

  • Vennell, Ross, 2011. "Estimating the power potential of tidal currents and the impact of power extraction on flow speeds," Renewable Energy, Elsevier, vol. 36(12), pages 3558-3565.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:12:p:3558-3565
    DOI: 10.1016/j.renene.2011.05.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111002370
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.05.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garrett, Chris & Cummins, Patrick, 2008. "Limits to tidal current power," Renewable Energy, Elsevier, vol. 33(11), pages 2485-2490.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Obara, Shin’ya & Kawai, Masahito & Kawae, Osamu & Morizane, Yuta, 2013. "Operational planning of an independent microgrid containing tidal power generators, SOFCs, and photovoltaics," Applied Energy, Elsevier, vol. 102(C), pages 1343-1357.
    2. Work, Paul A. & Haas, Kevin A. & Defne, Zafer & Gay, Thomas, 2013. "Tidal stream energy site assessment via three-dimensional model and measurements," Applied Energy, Elsevier, vol. 102(C), pages 510-519.
    3. Funke, S.W. & Kramer, S.C. & Piggott, M.D., 2016. "Design optimisation and resource assessment for tidal-stream renewable energy farms using a new continuous turbine approach," Renewable Energy, Elsevier, vol. 99(C), pages 1046-1061.
    4. Vennell, Ross, 2012. "Realizing the potential of tidal currents and the efficiency of turbine farms in a channel," Renewable Energy, Elsevier, vol. 47(C), pages 95-102.
    5. Khan, N. & Kalair, A. & Abas, N. & Haider, A., 2017. "Review of ocean tidal, wave and thermal energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 590-604.
    6. Fairley, Iain & Evans, Paul & Wooldridge, Chris & Willis, Miles & Masters, Ian, 2013. "Evaluation of tidal stream resource in a potential array area via direct measurements," Renewable Energy, Elsevier, vol. 57(C), pages 70-78.
    7. Smeaton, Malcolm & Vennell, Ross & Harang, Alice, 2016. "The effect of channel constriction on the potential for tidal stream power," Renewable Energy, Elsevier, vol. 99(C), pages 45-56.
    8. Lam, Wei-Haur & Bhatia, Aalisha, 2013. "Folding tidal turbine as an innovative concept toward the new era of turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 463-473.
    9. Plew, David R. & Stevens, Craig L., 2013. "Numerical modelling of the effect of turbines on currents in a tidal channel – Tory Channel, New Zealand," Renewable Energy, Elsevier, vol. 57(C), pages 269-282.
    10. Park, Young Hyun, 2017. "Analysis of characteristics of Dynamic Tidal Power on the west coast of Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 461-474.
    11. Tang, H.S. & Kraatz, S. & Qu, K. & Chen, G.Q. & Aboobaker, N. & Jiang, C.B., 2014. "High-resolution survey of tidal energy towards power generation and influence of sea-level-rise: A case study at coast of New Jersey, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 960-982.
    12. Vennell, Ross & Funke, Simon W. & Draper, Scott & Stevens, Craig & Divett, Tim, 2015. "Designing large arrays of tidal turbines: A synthesis and review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 454-472.
    13. Ross, Lauren & Sottolichio, Aldo & Huybrechts, Nicolas & Brunet, Pascal, 2021. "Tidal turbines in the estuarine environment: From identifying optimal location to environmental impact," Renewable Energy, Elsevier, vol. 169(C), pages 700-713.
    14. Vennell, Ross, 2012. "The energetics of large tidal turbine arrays," Renewable Energy, Elsevier, vol. 48(C), pages 210-219.
    15. Wei-Bo Chen & Wen-Cheng Liu & Ming-Hsi Hsu, 2013. "Modeling Evaluation of Tidal Stream Energy and the Impacts of Energy Extraction on Hydrodynamics in the Taiwan Strait," Energies, MDPI, vol. 6(4), pages 1-13, April.
    16. Vennell, Ross & Major, Robert & Zyngfogel, Remy & Beamsley, Brett & Smeaton, Malcolm & Scheel, Max & Unwin, Heni, 2020. "Rapid initial assessment of the number of turbines required for large-scale power generation by tidal currents," Renewable Energy, Elsevier, vol. 162(C), pages 1890-1905.
    17. Widén, Joakim & Carpman, Nicole & Castellucci, Valeria & Lingfors, David & Olauson, Jon & Remouit, Flore & Bergkvist, Mikael & Grabbe, Mårten & Waters, Rafael, 2015. "Variability assessment and forecasting of renewables: A review for solar, wind, wave and tidal resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 356-375.
    18. Pérez-Ortiz, Alberto & Borthwick, Alistair G.L. & McNaughton, James & Smith, Helen C.M. & Xiao, Qing, 2017. "Resource characterization of sites in the vicinity of an island near a landmass," Renewable Energy, Elsevier, vol. 103(C), pages 265-276.
    19. Vennell, Ross, 2013. "Exceeding the Betz limit with tidal turbines," Renewable Energy, Elsevier, vol. 55(C), pages 277-285.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lilia Flores Mateos & Michael Hartnett, 2020. "Hydrodynamic Effects of Tidal-Stream Power Extraction for Varying Turbine Operating Conditions," Energies, MDPI, vol. 13(12), pages 1-23, June.
    2. Myers, L.E. & Bahaj, A.S., 2012. "An experimental investigation simulating flow effects in first generation marine current energy converter arrays," Renewable Energy, Elsevier, vol. 37(1), pages 28-36.
    3. Goude, Anders & Ågren, Olov, 2014. "Simulations of a vertical axis turbine in a channel," Renewable Energy, Elsevier, vol. 63(C), pages 477-485.
    4. Work, Paul A. & Haas, Kevin A. & Defne, Zafer & Gay, Thomas, 2013. "Tidal stream energy site assessment via three-dimensional model and measurements," Applied Energy, Elsevier, vol. 102(C), pages 510-519.
    5. Kartezhnikova, Maria & Ravens, Thomas M., 2014. "Hydraulic impacts of hydrokinetic devices," Renewable Energy, Elsevier, vol. 66(C), pages 425-432.
    6. Funke, S.W. & Farrell, P.E. & Piggott, M.D., 2014. "Tidal turbine array optimisation using the adjoint approach," Renewable Energy, Elsevier, vol. 63(C), pages 658-673.
    7. Neill, Simon P. & Hashemi, M. Reza & Lewis, Matt J., 2016. "Tidal energy leasing and tidal phasing," Renewable Energy, Elsevier, vol. 85(C), pages 580-587.
    8. González-Gorbeña, Eduardo & Qassim, Raad Y. & Rosman, Paulo C.C., 2016. "Optimisation of hydrokinetic turbine array layouts via surrogate modelling," Renewable Energy, Elsevier, vol. 93(C), pages 45-57.
    9. Simone Giorgi & John V. Ringwood, 2013. "Can Tidal Current Energy Provide Base Load?," Energies, MDPI, vol. 6(6), pages 1-19, June.
    10. du Feu, R.J. & Funke, S.W. & Kramer, S.C. & Culley, D.M. & Hill, J. & Halpern, B.S. & Piggott, M.D., 2017. "The trade-off between tidal-turbine array yield and impact on flow: A multi-objective optimisation problem," Renewable Energy, Elsevier, vol. 114(PB), pages 1247-1257.
    11. Rourke, Fergal O. & Boyle, Fergal & Reynolds, Anthony, 2010. "Marine current energy devices: Current status and possible future applications in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1026-1036, April.
    12. Kumar, Dinesh & Sarkar, Shibayan, 2016. "A review on the technology, performance, design optimization, reliability, techno-economics and environmental impacts of hydrokinetic energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 796-813.
    13. Tang, H.S. & Kraatz, S. & Qu, K. & Chen, G.Q. & Aboobaker, N. & Jiang, C.B., 2014. "High-resolution survey of tidal energy towards power generation and influence of sea-level-rise: A case study at coast of New Jersey, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 960-982.
    14. Grabbe, Mårten & Lalander, Emilia & Lundin, Staffan & Leijon, Mats, 2009. "A review of the tidal current energy resource in Norway," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1898-1909, October.
    15. Faez Hassan, Haydar & El-Shafie, Ahmed & Karim, Othman A., 2012. "Tidal current turbines glance at the past and look into future prospects in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5707-5717.
    16. Segura, E. & Morales, R. & Somolinos, J.A. & López, A., 2017. "Techno-economic challenges of tidal energy conversion systems: Current status and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 536-550.
    17. Villalón, V. & Watts, D. & Cienfuegos, R., 2019. "Assessment of the power potential extraction in the Chilean Chacao channel," Renewable Energy, Elsevier, vol. 131(C), pages 585-596.
    18. Bai, Guanghui & Li, Wei & Chang, Hao & Li, Guojun, 2016. "The effect of tidal current directions on the optimal design and hydrodynamic performance of a three-turbine system," Renewable Energy, Elsevier, vol. 94(C), pages 48-54.
    19. Vennell, Ross, 2012. "Realizing the potential of tidal currents and the efficiency of turbine farms in a channel," Renewable Energy, Elsevier, vol. 47(C), pages 95-102.
    20. Plew, David R. & Stevens, Craig L., 2013. "Numerical modelling of the effect of turbines on currents in a tidal channel – Tory Channel, New Zealand," Renewable Energy, Elsevier, vol. 57(C), pages 269-282.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:12:p:3558-3565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.