IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v236y2024ics0960148124014496.html
   My bibliography  Save this article

Objective representative flow field selection for tidal array layout design

Author

Listed:
  • Jordan, Connor
  • Agirre, Joseba
  • Angeloudis, Athanasios

Abstract

The representation of flow across influential spatiotemporal scales introduces a challenge when micro-siting tidal stream turbine arrays. Robust representative approximations could accelerate design optimisation, yet there is no consensus on what defines the most appropriate flow conditions. We summarise existing approaches to representative flow field selection for array optimisation and propose an objective-driven process. The method curates a subset of flow fields that best captures relevant dynamics, enabling the streamlined representation of tidal cycles. To demonstrate the method, we consider flow modelling data in the Inner Sound of the Pentland Firth, Scotland, UK. We examine the impact of flow field inputs to array design through comparative analyses using a heuristic array optimisation process. Results indicate notable sensitivity of the turbine layout to the flow conditions selected. For the case study presented, our method led to 4%–5% energy yield prediction improvements relative to use of simple time-interval based approaches and up to 2% improvement against using peak flow fields; these can be pivotal margins to secure feasibility by developers. We also find that using the data associated with a single monitored point across the array for flow field selection can lead to sub-optimal results, emphasising the need for accurate spatiotemporal representation.

Suggested Citation

  • Jordan, Connor & Agirre, Joseba & Angeloudis, Athanasios, 2024. "Objective representative flow field selection for tidal array layout design," Renewable Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124014496
    DOI: 10.1016/j.renene.2024.121381
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124014496
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121381?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pappas, Konstantinos & Mackie, Lucas & Zilakos, Ilias & van der Weijde, Adriaan Hendrik & Angeloudis, Athanasios, 2023. "Sensitivity of tidal range assessments to harmonic constituents and analysis timeframe," Renewable Energy, Elsevier, vol. 205(C), pages 125-141.
    2. Funke, S.W. & Farrell, P.E. & Piggott, M.D., 2014. "Tidal turbine array optimisation using the adjoint approach," Renewable Energy, Elsevier, vol. 63(C), pages 658-673.
    3. du Feu, R.J. & Funke, S.W. & Kramer, S.C. & Hill, J. & Piggott, M.D., 2019. "The trade-off between tidal-turbine array yield and environmental impact: A habitat suitability modelling approach," Renewable Energy, Elsevier, vol. 143(C), pages 390-403.
    4. Thiébaut, Maxime & Sentchev, Alexei, 2017. "Asymmetry of tidal currents off the W.Brittany coast and assessment of tidal energy resource around the Ushant Island," Renewable Energy, Elsevier, vol. 105(C), pages 735-747.
    5. Bastankhah, Majid & Porté-Agel, Fernando, 2014. "A new analytical model for wind-turbine wakes," Renewable Energy, Elsevier, vol. 70(C), pages 116-123.
    6. Kramer, Stephan C. & Piggott, Matthew D., 2016. "A correction to the enhanced bottom drag parameterisation of tidal turbines," Renewable Energy, Elsevier, vol. 92(C), pages 385-396.
    7. Funke, S.W. & Kramer, S.C. & Piggott, M.D., 2016. "Design optimisation and resource assessment for tidal-stream renewable energy farms using a new continuous turbine approach," Renewable Energy, Elsevier, vol. 99(C), pages 1046-1061.
    8. Neill, Simon P. & Hashemi, M. Reza & Lewis, Matt J., 2014. "The role of tidal asymmetry in characterizing the tidal energy resource of Orkney," Renewable Energy, Elsevier, vol. 68(C), pages 337-350.
    9. Amin Niayifar & Fernando Porté-Agel, 2016. "Analytical Modeling of Wind Farms: A New Approach for Power Prediction," Energies, MDPI, vol. 9(9), pages 1-13, September.
    10. González-Gorbeña, Eduardo & Qassim, Raad Y. & Rosman, Paulo C.C., 2016. "Optimisation of hydrokinetic turbine array layouts via surrogate modelling," Renewable Energy, Elsevier, vol. 93(C), pages 45-57.
    11. Evans, P. & Mason-Jones, A. & Wilson, C. & Wooldridge, C. & O'Doherty, T. & O'Doherty, D., 2015. "Constraints on extractable power from energetic tidal straits," Renewable Energy, Elsevier, vol. 81(C), pages 707-722.
    12. Goss, Z.L. & Coles, D.S. & Kramer, S.C. & Piggott, M.D., 2021. "Efficient economic optimisation of large-scale tidal stream arrays," Applied Energy, Elsevier, vol. 295(C).
    13. Divett, Tim & Vennell, Ross & Stevens, Craig, 2016. "Channel-scale optimisation and tuning of large tidal turbine arrays using LES with adaptive mesh," Renewable Energy, Elsevier, vol. 86(C), pages 1394-1405.
    14. Culley, D.M. & Funke, S.W. & Kramer, S.C. & Piggott, M.D., 2016. "Integration of cost modelling within the micro-siting design optimisation of tidal turbine arrays," Renewable Energy, Elsevier, vol. 85(C), pages 215-227.
    15. González-Gorbeña, Eduardo & Qassim, Raad Y. & Rosman, Paulo C.C., 2018. "Multi-dimensional optimisation of Tidal Energy Converters array layouts considering geometric, economic and environmental constraints," Renewable Energy, Elsevier, vol. 116(PA), pages 647-658.
    16. du Feu, R.J. & Funke, S.W. & Kramer, S.C. & Culley, D.M. & Hill, J. & Halpern, B.S. & Piggott, M.D., 2017. "The trade-off between tidal-turbine array yield and impact on flow: A multi-objective optimisation problem," Renewable Energy, Elsevier, vol. 114(PB), pages 1247-1257.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goss, Z.L. & Coles, D.S. & Kramer, S.C. & Piggott, M.D., 2021. "Efficient economic optimisation of large-scale tidal stream arrays," Applied Energy, Elsevier, vol. 295(C).
    2. Yang, Zhixue & Ren, Zhouyang & Li, Hui & Pan, Zhen & Xia, Weiyi, 2024. "A review of tidal current power generation farm planning: Methodologies, characteristics and challenges," Renewable Energy, Elsevier, vol. 220(C).
    3. González-Gorbeña, Eduardo & Qassim, Raad Y. & Rosman, Paulo C.C., 2018. "Multi-dimensional optimisation of Tidal Energy Converters array layouts considering geometric, economic and environmental constraints," Renewable Energy, Elsevier, vol. 116(PA), pages 647-658.
    4. Topper, Mathew B.R. & Olson, Sterling S. & Roberts, Jesse D., 2021. "On the benefits of negative hydrodynamic interactions in small tidal energy arrays," Applied Energy, Elsevier, vol. 297(C).
    5. Zoe Goss & Daniel Coles & Matthew Piggott, 2021. "Economic analysis of tidal stream turbine arrays: a review," Papers 2105.04718, arXiv.org.
    6. du Feu, R.J. & Funke, S.W. & Kramer, S.C. & Hill, J. & Piggott, M.D., 2019. "The trade-off between tidal-turbine array yield and environmental impact: A habitat suitability modelling approach," Renewable Energy, Elsevier, vol. 143(C), pages 390-403.
    7. González-Gorbeña, Eduardo & Pacheco, André & Plomaritis, Theocharis A. & Ferreira, Óscar & Sequeira, Cláudia, 2018. "Estimating the optimum size of a tidal array at a multi-inlet system considering environmental and performance constraints," Applied Energy, Elsevier, vol. 232(C), pages 292-311.
    8. Ramos, V. & Carballo, R. & Ringwood, John V., 2019. "Application of the actuator disc theory of Delft3D-FLOW to model far-field hydrodynamic impacts of tidal turbines," Renewable Energy, Elsevier, vol. 139(C), pages 1320-1335.
    9. du Feu, R.J. & Funke, S.W. & Kramer, S.C. & Culley, D.M. & Hill, J. & Halpern, B.S. & Piggott, M.D., 2017. "The trade-off between tidal-turbine array yield and impact on flow: A multi-objective optimisation problem," Renewable Energy, Elsevier, vol. 114(PB), pages 1247-1257.
    10. Angeloudis, Athanasios & Kramer, Stephan C. & Avdis, Alexandros & Piggott, Matthew D., 2018. "Optimising tidal range power plant operation," Applied Energy, Elsevier, vol. 212(C), pages 680-690.
    11. Aguayo, Maichel M. & Fierro, Pablo E. & De la Fuente, Rodrigo A. & Sepúlveda, Ignacio A. & Figueroa, Dante M., 2021. "A mixed-integer programming methodology to design tidal current farms integrating both cost and benefits: A case study in the Chacao Channel, Chile," Applied Energy, Elsevier, vol. 294(C).
    12. Lo Brutto, Ottavio A. & Thiébot, Jérôme & Guillou, Sylvain S. & Gualous, Hamid, 2016. "A semi-analytic method to optimize tidal farm layouts – Application to the Alderney Race (Raz Blanchard), France," Applied Energy, Elsevier, vol. 183(C), pages 1168-1180.
    13. Guillou, Nicolas & Chapalain, Georges, 2017. "Assessing the impact of tidal stream energy extraction on the Lagrangian circulation," Applied Energy, Elsevier, vol. 203(C), pages 321-332.
    14. Vennell, Ross & Major, Robert & Zyngfogel, Remy & Beamsley, Brett & Smeaton, Malcolm & Scheel, Max & Unwin, Heni, 2020. "Rapid initial assessment of the number of turbines required for large-scale power generation by tidal currents," Renewable Energy, Elsevier, vol. 162(C), pages 1890-1905.
    15. Avdis, Alexandros & Candy, Adam S. & Hill, Jon & Kramer, Stephan C. & Piggott, Matthew D., 2018. "Efficient unstructured mesh generation for marine renewable energy applications," Renewable Energy, Elsevier, vol. 116(PA), pages 842-856.
    16. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    17. Ti, Zilong & Deng, Xiao Wei & Yang, Hongxing, 2020. "Wake modeling of wind turbines using machine learning," Applied Energy, Elsevier, vol. 257(C).
    18. Souaiby, Marwa & Porté-Agel, Fernando, 2024. "An improved analytical framework for flow prediction inside and downstream of wind farms," Renewable Energy, Elsevier, vol. 225(C).
    19. Mingqiu Liu & Zhichang Liang & Haixiao Liu, 2022. "Numerical Investigations of Wake Expansion in the Offshore Wind Farm Using a Large Eddy Simulation," Energies, MDPI, vol. 15(6), pages 1-19, March.
    20. Ti, Zilong & Deng, Xiao Wei & Zhang, Mingming, 2021. "Artificial Neural Networks based wake model for power prediction of wind farm," Renewable Energy, Elsevier, vol. 172(C), pages 618-631.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124014496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.