IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v236y2024ics0960148124014496.html
   My bibliography  Save this article

Objective representative flow field selection for tidal array layout design

Author

Listed:
  • Jordan, Connor
  • Agirre, Joseba
  • Angeloudis, Athanasios

Abstract

The representation of flow across influential spatiotemporal scales introduces a challenge when micro-siting tidal stream turbine arrays. Robust representative approximations could accelerate design optimisation, yet there is no consensus on what defines the most appropriate flow conditions. We summarise existing approaches to representative flow field selection for array optimisation and propose an objective-driven process. The method curates a subset of flow fields that best captures relevant dynamics, enabling the streamlined representation of tidal cycles. To demonstrate the method, we consider flow modelling data in the Inner Sound of the Pentland Firth, Scotland, UK. We examine the impact of flow field inputs to array design through comparative analyses using a heuristic array optimisation process. Results indicate notable sensitivity of the turbine layout to the flow conditions selected. For the case study presented, our method led to 4%–5% energy yield prediction improvements relative to use of simple time-interval based approaches and up to 2% improvement against using peak flow fields; these can be pivotal margins to secure feasibility by developers. We also find that using the data associated with a single monitored point across the array for flow field selection can lead to sub-optimal results, emphasising the need for accurate spatiotemporal representation.

Suggested Citation

  • Jordan, Connor & Agirre, Joseba & Angeloudis, Athanasios, 2024. "Objective representative flow field selection for tidal array layout design," Renewable Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124014496
    DOI: 10.1016/j.renene.2024.121381
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124014496
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121381?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124014496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.