IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p697-d207880.html
   My bibliography  Save this article

Implementation of Open Boundaries within a Two-Way Coupled SPH Model to Simulate Nonlinear Wave–Structure Interactions

Author

Listed:
  • Tim Verbrugghe

    (Department of Civil Engineering, Ghent University, Technologiepark 904, B-9052 Zwijnaarde, Belgium)

  • Vasiliki Stratigaki

    (Department of Civil Engineering, Ghent University, Technologiepark 904, B-9052 Zwijnaarde, Belgium)

  • Corrado Altomare

    (Department of Civil Engineering, Ghent University, Technologiepark 904, B-9052 Zwijnaarde, Belgium)

  • J. M. Domínguez

    (EPHYSLAB Environmental Physics Laboratory, Universidade de Vigo, AS LAGOAS, 32004 Ourense, Spain)

  • Peter Troch

    (Department of Civil Engineering, Ghent University, Technologiepark 904, B-9052 Zwijnaarde, Belgium)

  • Andreas Kortenhaus

    (Department of Civil Engineering, Ghent University, Technologiepark 904, B-9052 Zwijnaarde, Belgium)

Abstract

A two-way coupling between the Smoothed Particle Hydrodynamics (SPH) solver DualSPHysics and the Fully Nonlinear Potential Flow solver OceanWave3D is presented. At the coupling interfaces within the SPH numerical domain, an open boundary formulation is applied. An inlet and outlet zone are filled with buffer particles. At the inlet, horizontal orbital velocities and surface elevations calculated using OceanWave3D are imposed on the buffer particles. At the outlet, horizontal orbital velocities are imposed, but the surface elevation is extrapolated from the fluid domain. Velocity corrections are applied to avoid unwanted reflections in the SPH fluid domain. The SPH surface elevation is coupled back to OceanWave3D, where the originally calculated free surface is overwritten. The coupling methodology is validated using a 2D test case of a floating box. Additionally, a 3D proof of concept is shown where overtopping waves are acting on a heaving cylinder. The two-way coupled model (exchange of information in two directions between the coupled models) has proven to be capable of simulating wave propagation and wave–structure interaction problems with an acceptable accuracy with error values remaining below the smoothing length h S P H .

Suggested Citation

  • Tim Verbrugghe & Vasiliki Stratigaki & Corrado Altomare & J. M. Domínguez & Peter Troch & Andreas Kortenhaus, 2019. "Implementation of Open Boundaries within a Two-Way Coupled SPH Model to Simulate Nonlinear Wave–Structure Interactions," Energies, MDPI, vol. 12(4), pages 1-23, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:697-:d:207880
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/697/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/697/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ropero-Giralda, Pablo & Crespo, Alejandro J.C. & Tagliafierro, Bonaventura & Altomare, Corrado & Domínguez, José M. & Gómez-Gesteira, Moncho & Viccione, Giacomo, 2020. "Efficiency and survivability analysis of a point-absorber wave energy converter using DualSPHysics," Renewable Energy, Elsevier, vol. 162(C), pages 1763-1776.
    2. Bonaventura Tagliafierro & Madjid Karimirad & Iván Martínez-Estévez & José M. Domínguez & Giacomo Viccione & Alejandro J. C. Crespo, 2022. "Numerical Assessment of a Tension-Leg Platform Wind Turbine in Intermediate Water Using the Smoothed Particle Hydrodynamics Method," Energies, MDPI, vol. 15(11), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:697-:d:207880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.