IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v160y2020icp288-296.html
   My bibliography  Save this article

Inhibition of the biodiesel oxidation by alcoholic extracts of green and black tea leaves and plum pulp: Application of the simplex-centroid design

Author

Listed:
  • Correia, I.A.S.
  • Borsato, D.
  • Savada, F.Y.
  • Pauli, E.D.
  • Mantovani, A.C.G.
  • Cremasco, H.
  • Chendynski, L.T.

Abstract

The efficiency of extracts with antioxidant properties of plum pulp, black tea and green tea leaves was evaluated, analyzing the induction periods (IP) and rate constants (k) at 110 °C, in the 1st, 30th, 57th an 91st day of storage. Antioxidant activity was observed in all extracts, either by the rat constant decreased or by the induction period increase. The higher induction period obtained was 9.15 h for the black tea leaves extract while the lower was 6.97 h for the green tea leaves extract. The control had an average induction period of 6.95 h for the first day. The models obtained are significant and showed determination coefficients greater than 0.90 with no significance lack of fit at the level of 5%. The optimization with maximization of the induction period and minimization of the rate constant showed that the black tea extract was the most suitable to avoid oxidation. On the first day of test, the optimization indicates the mixture containing 50% of black tea and 50% of plum pulp extract as the best mixture. The optimizations provided a variation of 8.92 < IP (h) < 9.69 and 0.25 < k (h−1) < 0.38.

Suggested Citation

  • Correia, I.A.S. & Borsato, D. & Savada, F.Y. & Pauli, E.D. & Mantovani, A.C.G. & Cremasco, H. & Chendynski, L.T., 2020. "Inhibition of the biodiesel oxidation by alcoholic extracts of green and black tea leaves and plum pulp: Application of the simplex-centroid design," Renewable Energy, Elsevier, vol. 160(C), pages 288-296.
  • Handle: RePEc:eee:renene:v:160:y:2020:i:c:p:288-296
    DOI: 10.1016/j.renene.2020.06.118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120310351
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.06.118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jain, Siddharth & Sharma, M.P., 2010. "Review of different test methods for the evaluation of stability of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1937-1947, September.
    2. Khounani, Zahra & Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Sulaiman, Alawi & Goli, Sayed Amir Hossein & Tavassoli-Kafrani, Elham & Ghaffari, Akram & Rajaeifar, Mohammad Ali & Kim, Ki-Hyun, 2020. "Unlocking the potential of walnut husk extract in the production of waste cooking oil-based biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Jain, Siddharth & Sharma, M.P., 2010. "Stability of biodiesel and its blends: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 667-678, February.
    4. Sorate, Kamalesh A. & Bhale, Purnanand V., 2015. "Biodiesel properties and automotive system compatibility issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 777-798.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jemima Romola, C.V. & Meganaharshini, M. & Rigby, S.P. & Ganesh Moorthy, I. & Shyam Kumar, R. & Karthikumar, Sankar, 2021. "A comprehensive review of the selection of natural and synthetic antioxidants to enhance the oxidative stability of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Fernandes, David M. & Squissato, André L. & Lima, Alexandre F. & Richter, Eduardo M. & Munoz, Rodrigo A.A., 2019. "Corrosive character of Moringa oleifera Lam biodiesel exposed to carbon steel under simulated storage conditions," Renewable Energy, Elsevier, vol. 139(C), pages 1263-1271.
    3. Shahabuddin, M. & Kalam, M.A. & Masjuki, H.H. & Bhuiya, M.M.K. & Mofijur, M., 2012. "An experimental investigation into biodiesel stability by means of oxidation and property determination," Energy, Elsevier, vol. 44(1), pages 616-622.
    4. Yaakob, Zahira & Narayanan, Binitha N. & Padikkaparambil, Silija & Unni K., Surya & Akbar P., Mohammed, 2014. "A review on the oxidation stability of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 136-153.
    5. Sundus, F. & Fazal, M.A. & Masjuki, H.H., 2017. "Tribology with biodiesel: A study on enhancing biodiesel stability and its fuel properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 399-412.
    6. Díez Valbuena, G. & García Tuero, A. & Díez, J. & Rodríguez, E. & Hernández Battez, A., 2024. "Application of machine learning techniques to predict biodiesel iodine value," Energy, Elsevier, vol. 292(C).
    7. Jain, Siddharth & Sharma, M.P., 2011. "Long term storage stability of Jatropha curcas biodiesel," Energy, Elsevier, vol. 36(8), pages 5409-5415.
    8. Ferraz de Campos, Victor Arruda & Silva, Valter Bruno & Cardoso, João Sousa & Brito, Paulo S. & Tuna, Celso Eduardo & Silveira, José Luz, 2021. "A review of waste management in Brazil and Portugal: Waste-to-energy as pathway for sustainable development," Renewable Energy, Elsevier, vol. 178(C), pages 802-820.
    9. Dwivedi, Gaurav & Jain, Siddharth & Sharma, M.P., 2011. "Impact analysis of biodiesel on engine performance—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4633-4641.
    10. Dwivedi, Gaurav & Sharma, M.P., 2014. "Impact of cold flow properties of biodiesel on engine performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 650-656.
    11. Siddharth Jain, 2023. "An Assessment of the Operation and Emission Characteristics of a Diesel Engine Powered by a New Biofuel Prepared Using In Situ Transesterification of a Dry Spirogyra Algae–Jatropha Powder Mixture," Energies, MDPI, vol. 16(3), pages 1-16, February.
    12. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    13. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
    14. Jain, Siddharth & Sharma, M.P., 2011. "Thermal stability of biodiesel and its blends: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 438-448, January.
    15. di Bitonto, Luigi & Reynel-Ávila, Hilda Elizabeth & Mendoza-Castillo, Didilia Ileana & Bonilla-Petriciolet, Adrián & Durán-Valle, Carlos J. & Pastore, Carlo, 2020. "Synthesis and characterization of nanostructured calcium oxides supported onto biochar and their application as catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 160(C), pages 52-66.
    16. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    17. Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Kalogirou, Soteris A. & Gupta, Vijai Kumar & Park, Young-Kwon & Fallahi, Alireza & Sulaiman, Alawi & Ranjbari, Meisam & Rahnama, Hassan & Aghbashl, 2022. "Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Govindasamy, Mohan & Ramalingam, Senthil & Dhairiyasamy, Ratchagaraja & Rajendran, Silambarasan, 2022. "Investigation on thermal and storage stability of the Calophyllum inophyllum ester with natural leaf extract as antioxidant additive," Energy, Elsevier, vol. 253(C).
    19. Jakeria, M.R. & Fazal, M.A. & Haseeb, A.S.M.A., 2014. "Influence of different factors on the stability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 154-163.
    20. Aghbashlo, Mortaza & Khounani, Zahra & Hosseinzadeh-Bandbafha, Homa & Gupta, Vijai Kumar & Amiri, Hamid & Lam, Su Shiung & Morosuk, Tatiana & Tabatabaei, Meisam, 2021. "Exergoenvironmental analysis of bioenergy systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:160:y:2020:i:c:p:288-296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.