IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p4930-d545177.html
   My bibliography  Save this article

Fuel Injection Responses and Particulate Emissions of a CRDI Engine Fueled with Cocos nucifera Biodiesel

Author

Listed:
  • Yew Heng Teoh

    (School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia)

  • Heoy Geok How

    (Department of Engineering, School of Engineering, Computing and Built Environment, UOW Malaysia KDU Penang University College, 32, Jalan Anson, Georgetown 10400, Penang, Malaysia)

  • Farooq Sher

    (School of Mechanical, Aerospace and Automotive Engineering, Faculty of Engineering, Environmental and Computing, Coventry University, Coventry CV1 5FB, UK)

  • Thanh Danh Le

    (Faculty of Mechanical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao Street, Ward 4, Go Vap District, Ho Chi Minh City 71408, Vietnam)

  • Huu Tho Nguyen

    (Department of Fundamentals of Mechanical Engineering, Faculty of Automotive, Mechanical, Electrical and Electronic Engineering (FAME), An Phu Dong Campus, Nguyen Tat Thanh University, Ho Chi Minh City 729800, Vietnam)

  • Haseeb Yaqoob

    (School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia
    Department of Mechanical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan)

Abstract

The objective of this paper is to study the effect of coconut oil biodiesel (COB)-diesel blends on exhaust particulate matter (PM) emissions and fuel injection responses in an unmodified turbocharged four-stroke common-rail direct injection (CRDI) diesel engine. Characterization of COB and their blends has been conducted to ascertain the applicability of these fuels for the existing engine. The test fuels used were fossil diesel fuel, COB10, COB20, COB30 and COB50 of biodiesel-diesel fuels. A test cycle which composed of 16 different steady-state modes at various loads and speed conditions was followed. Generally, the results showed a marginally advanced SOI timing and longer injection duration with increasing COB blends at higher load as compared to diesel fuel. Additionally, the lower calorific value (CV) and higher viscosity of the COB fuel blends have resulted in reduced turbo boost pressure and increased common-rail fuel injection pressure, respectively, across all engine speeds and loads. On the aspects of PM emissions characterization, results indicated that the blending of COB with conventional diesel had benefits over diesel in PM reduction. In fact, the largest achievable PM mass reduction of 38.55% was attained with COB50. In addition, it was noticed that the size of PM particles accumulated such that the granular size increased with higher diesel content in the blend. Additionally, the composition analysis on the PM collected by EDX spectroscopy has revealed that the C, O and Si as three main elements that made up the PM particles in descending order. Overall, the results indicated that COB biodiesel is a clean-burning alternative fuel and can be used satisfactorily in an unmodified diesel engine without the needs for engine remapping.

Suggested Citation

  • Yew Heng Teoh & Heoy Geok How & Farooq Sher & Thanh Danh Le & Huu Tho Nguyen & Haseeb Yaqoob, 2021. "Fuel Injection Responses and Particulate Emissions of a CRDI Engine Fueled with Cocos nucifera Biodiesel," Sustainability, MDPI, vol. 13(9), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4930-:d:545177
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/4930/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/4930/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Ying & Liu, Hong & Lee, Chia-Fon F., 2016. "Particulate matter emission characteristics of diesel engines with biodiesel or biodiesel blending: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 569-581.
    2. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    3. Monirul, I.M. & Kalam, M.A. & Masjuki, H.H. & Zulkifli, N.W.M. & Shahir, S.A. & Mosarof, M.H. & Ruhul, A.M., 2017. "Influence of poly(methyl acrylate) additive on cold flow properties of coconut biodiesel blends and exhaust gas emissions," Renewable Energy, Elsevier, vol. 101(C), pages 702-712.
    4. Jain, Siddharth & Sharma, M.P., 2010. "Stability of biodiesel and its blends: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 667-678, February.
    5. Nakpong, Piyanuch & Wootthikanokkhan, Sasiwimol, 2010. "High free fatty acid coconut oil as a potential feedstock for biodiesel production in Thailand," Renewable Energy, Elsevier, vol. 35(8), pages 1682-1687.
    6. Rakopoulos, Constantine D. & Dimaratos, Athanasios M. & Giakoumis, Evangelos G. & Rakopoulos, Dimitrios C., 2010. "Investigating the emissions during acceleration of a turbocharged diesel engine operating with bio-diesel or n-butanol diesel fuel blends," Energy, Elsevier, vol. 35(12), pages 5173-5184.
    7. Rizwanul Fattah, I.M. & Masjuki, H.H. & Liaquat, A.M. & Ramli, Rahizar & Kalam, M.A. & Riazuddin, V.N., 2013. "Impact of various biodiesel fuels obtained from edible and non-edible oils on engine exhaust gas and noise emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 552-567.
    8. Atmanli, Alpaslan & Ileri, Erol & Yuksel, Bedri & Yilmaz, Nadir, 2015. "Extensive analyses of diesel–vegetable oil–n-butanol ternary blends in a diesel engine," Applied Energy, Elsevier, vol. 145(C), pages 155-162.
    9. Shahabuddin, M. & Kalam, M.A. & Masjuki, H.H. & Bhuiya, M.M.K. & Mofijur, M., 2012. "An experimental investigation into biodiesel stability by means of oxidation and property determination," Energy, Elsevier, vol. 44(1), pages 616-622.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Alsarayreh & Omar Mohamed & Mustafa Matar, 2022. "Modeling a Practical Dual-Fuel Gas Turbine Power Generation System Using Dynamic Neural Network and Deep Learning," Sustainability, MDPI, vol. 14(2), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Arbab, M.I. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Imtenan, S. & Sajjad, H., 2013. "Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 133-147.
    3. Imran, A. & Varman, M. & Masjuki, H.H. & Kalam, M.A., 2013. "Review on alcohol fumigation on diesel engine: A viable alternative dual fuel technology for satisfactory engine performance and reduction of environment concerning emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 739-751.
    4. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    5. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Jakeria, M.R. & Fazal, M.A. & Haseeb, A.S.M.A., 2014. "Influence of different factors on the stability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 154-163.
    7. Rizwanul Fattah, I.M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Masum, B.M. & Imtenan, S. & Ashraful, A.M., 2014. "Effect of antioxidants on oxidation stability of biodiesel derived from vegetable and animal based feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 356-370.
    8. Yaakob, Zahira & Narayanan, Binitha N. & Padikkaparambil, Silija & Unni K., Surya & Akbar P., Mohammed, 2014. "A review on the oxidation stability of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 136-153.
    9. Živković, Snežana B. & Veljković, Milan V. & Banković-Ilić, Ivana B. & Krstić, Ivan M. & Konstantinović, Sandra S. & Ilić, Slavica B. & Avramović, Jelena M. & Stamenković, Olivera S. & Veljković, Vlad, 2017. "Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 222-247.
    10. Eiadtrong, Suppakit & Maliwan, Kittinan & Prateepchaikul, Gumpon & Kattiyawan, Taweesak & Thephsorn, Pongsakorns & Leevijit, Theerayut, 2019. "Preparation, important fuel properties, and comparative use of un-preheated palm fatty acid distillate-diesel blends in a single cylinder diesel engine," Renewable Energy, Elsevier, vol. 134(C), pages 1089-1098.
    11. Sundus, F. & Fazal, M.A. & Masjuki, H.H., 2017. "Tribology with biodiesel: A study on enhancing biodiesel stability and its fuel properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 399-412.
    12. M, Vinod Babu & K, Madhu Murthy & G, Amba Prasad Rao, 2017. "Butanol and pentanol: The promising biofuels for CI engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1068-1088.
    13. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E., 2013. "Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective," Energy, Elsevier, vol. 55(C), pages 879-887.
    14. P Mohamed Shameer & P Mohamed Nishath, 2018. "Investigation and enhancement on fuel stability characteristics of biodiesel dosed with various synthetic antioxidants," Energy & Environment, , vol. 29(7), pages 1189-1207, November.
    15. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Liaquat, A.M. & Shahabuddin, M. & Varman, M., 2012. "Prospects of biodiesel from Jatropha in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5007-5020.
    16. Shahabuddin, M. & Liaquat, A.M. & Masjuki, H.H. & Kalam, M.A. & Mofijur, M., 2013. "Ignition delay, combustion and emission characteristics of diesel engine fueled with biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 623-632.
    17. Bukkarapu, Kiran Raj & Krishnasamy, Anand, 2022. "A critical review on available models to predict engine fuel properties of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    18. S. M. Ashrafur Rahman & I. M. Rizwanul Fattah & Hwai Chyuan Ong & M. F. M. A. Zamri, 2021. "State-of-the-Art of Strategies to Reduce Exhaust Emissions from Diesel Engine Vehicles," Energies, MDPI, vol. 14(6), pages 1-24, March.
    19. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    20. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4930-:d:545177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.