IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v14y2010i7p1937-1947.html
   My bibliography  Save this article

Review of different test methods for the evaluation of stability of biodiesel

Author

Listed:
  • Jain, Siddharth
  • Sharma, M.P.

Abstract

The vegetable oil, fats and their biodiesel suffer with the drawback of deterioration of its quality when it is in contact with oxygen unlike petroleum diesel. There are various types of stabilities like oxidation, storage and thermal, playing key roles in making the fuel unstable. The present paper is an attempt to review all type of stability measuring test methods to find out the best method for stability measurement. From the review it is found that there are several methods to measure the stability of biodiesel but two test methods emerges the most likely choice for the purpose of measurement of oxidation stability of biodiesel. These are ASTM 2274 and 743 Rancimat test. A comparison between these two shows that these may be used alternatively. Most commonly used methods to investigate the thermal stability are Rancimat test, ASTM D 6408-08, D 5304-06 and TGA/DTA. Rancimat test has been suggested as an important method to measure the thermal stability of oils, fats and biodiesel fuels.

Suggested Citation

  • Jain, Siddharth & Sharma, M.P., 2010. "Review of different test methods for the evaluation of stability of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1937-1947, September.
  • Handle: RePEc:eee:rensus:v:14:y:2010:i:7:p:1937-1947
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(10)00122-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jain, Siddharth & Sharma, M.P., 2010. "Stability of biodiesel and its blends: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 667-678, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Correia, I.A.S. & Borsato, D. & Savada, F.Y. & Pauli, E.D. & Mantovani, A.C.G. & Cremasco, H. & Chendynski, L.T., 2020. "Inhibition of the biodiesel oxidation by alcoholic extracts of green and black tea leaves and plum pulp: Application of the simplex-centroid design," Renewable Energy, Elsevier, vol. 160(C), pages 288-296.
    2. Shahabuddin, M. & Kalam, M.A. & Masjuki, H.H. & Bhuiya, M.M.K. & Mofijur, M., 2012. "An experimental investigation into biodiesel stability by means of oxidation and property determination," Energy, Elsevier, vol. 44(1), pages 616-622.
    3. Jemima Romola, C.V. & Meganaharshini, M. & Rigby, S.P. & Ganesh Moorthy, I. & Shyam Kumar, R. & Karthikumar, Sankar, 2021. "A comprehensive review of the selection of natural and synthetic antioxidants to enhance the oxidative stability of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Pullen, James & Saeed, Khizer, 2012. "An overview of biodiesel oxidation stability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5924-5950.
    5. Sorate, Kamalesh A. & Bhale, Purnanand V., 2015. "Biodiesel properties and automotive system compatibility issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 777-798.
    6. Yaakob, Zahira & Narayanan, Binitha N. & Padikkaparambil, Silija & Unni K., Surya & Akbar P., Mohammed, 2014. "A review on the oxidation stability of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 136-153.
    7. Jain, Siddharth & Sharma, M.P., 2011. "Long term storage stability of Jatropha curcas biodiesel," Energy, Elsevier, vol. 36(8), pages 5409-5415.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dwivedi, Gaurav & Jain, Siddharth & Sharma, M.P., 2011. "Impact analysis of biodiesel on engine performance—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4633-4641.
    2. Dwivedi, Gaurav & Sharma, M.P., 2014. "Impact of cold flow properties of biodiesel on engine performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 650-656.
    3. Siddharth Jain, 2023. "An Assessment of the Operation and Emission Characteristics of a Diesel Engine Powered by a New Biofuel Prepared Using In Situ Transesterification of a Dry Spirogyra Algae–Jatropha Powder Mixture," Energies, MDPI, vol. 16(3), pages 1-16, February.
    4. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    5. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
    6. Jain, Siddharth & Sharma, M.P., 2011. "Thermal stability of biodiesel and its blends: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 438-448, January.
    7. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    8. Govindasamy, Mohan & Ramalingam, Senthil & Dhairiyasamy, Ratchagaraja & Rajendran, Silambarasan, 2022. "Investigation on thermal and storage stability of the Calophyllum inophyllum ester with natural leaf extract as antioxidant additive," Energy, Elsevier, vol. 253(C).
    9. Jakeria, M.R. & Fazal, M.A. & Haseeb, A.S.M.A., 2014. "Influence of different factors on the stability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 154-163.
    10. Correia, I.A.S. & Borsato, D. & Savada, F.Y. & Pauli, E.D. & Mantovani, A.C.G. & Cremasco, H. & Chendynski, L.T., 2020. "Inhibition of the biodiesel oxidation by alcoholic extracts of green and black tea leaves and plum pulp: Application of the simplex-centroid design," Renewable Energy, Elsevier, vol. 160(C), pages 288-296.
    11. Fernandes, David M. & Squissato, André L. & Lima, Alexandre F. & Richter, Eduardo M. & Munoz, Rodrigo A.A., 2019. "Corrosive character of Moringa oleifera Lam biodiesel exposed to carbon steel under simulated storage conditions," Renewable Energy, Elsevier, vol. 139(C), pages 1263-1271.
    12. Yew Heng Teoh & Heoy Geok How & Farooq Sher & Thanh Danh Le & Huu Tho Nguyen & Haseeb Yaqoob, 2021. "Fuel Injection Responses and Particulate Emissions of a CRDI Engine Fueled with Cocos nucifera Biodiesel," Sustainability, MDPI, vol. 13(9), pages 1-17, April.
    13. Jae-Kon Kim & Cheol-Hwan Jeon & Hyung Won Lee & Young-Kwon Park & Kyong-il Min & In-ha Hwang & Young-Min Kim, 2018. "Effect of Accelerated High Temperature on Oxidation and Polymerization of Biodiesel from Vegetable Oils," Energies, MDPI, vol. 11(12), pages 1-11, December.
    14. Rizwanul Fattah, I.M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Masum, B.M. & Imtenan, S. & Ashraful, A.M., 2014. "Effect of antioxidants on oxidation stability of biodiesel derived from vegetable and animal based feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 356-370.
    15. Adamu, Haruna & Bello, Usman & Yuguda, Abubakar Umar & Tafida, Usman Ibrahim & Jalam, Abdullahi Mohammad & Sabo, Ahmed & Qamar, Mohammad, 2023. "Production processes, techno-economic and policy challenges of bioenergy production from fruit and vegetable wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    16. Rafael R. Maes & Geert Potters & Erik Fransen & Jeroen Geuens & Rowan Van Schaeren & Silvia Lenaerts, 2023. "Can We Find an Optimal Fatty Acid Composition of Biodiesel in Order to Improve Oxidation Stability?," Sustainability, MDPI, vol. 15(13), pages 1-10, June.
    17. Shahabuddin, M. & Kalam, M.A. & Masjuki, H.H. & Bhuiya, M.M.K. & Mofijur, M., 2012. "An experimental investigation into biodiesel stability by means of oxidation and property determination," Energy, Elsevier, vol. 44(1), pages 616-622.
    18. Md Mofijur Rahman & Mohammad Rasul & Nur Md Sayeed Hassan, 2017. "Study on the Tribological Characteristics of Australian Native First Generation and Second Generation Biodiesel Fuel," Energies, MDPI, vol. 10(1), pages 1-16, January.
    19. Fazal, M.A. & Haseeb, A.S.M.A. & Masjuki, H.H., 2011. "Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1314-1324, February.
    20. Yaakob, Zahira & Narayanan, Binitha N. & Padikkaparambil, Silija & Unni K., Surya & Akbar P., Mohammed, 2014. "A review on the oxidation stability of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 136-153.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:14:y:2010:i:7:p:1937-1947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.