IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp414-425.html
   My bibliography  Save this article

On the hydrodynamic performance of a vertical pile-restrained WEC-type floating breakwater

Author

Listed:
  • Chen, Qiang
  • Zang, Jun
  • Birchall, Jonathan
  • Ning, Dezhi
  • Zhao, Xuanlie
  • Gao, Junliang

Abstract

This paper presents a numerical study on the hydrodynamic performance of a vertical pile-restrained wave energy converter type floating breakwater. The aims are to further understand the characteristics of such integrated system in terms of both wave energy extraction and wave attenuation, and to provide guidance for optimising the shape of the floating breakwater for more energy absorption and less wave transmission at the same time. The numerical model solves the incompressible Navier-Stokes equations for free-surface flows using the particle-in-cell method and incorporates a Cartesian cut cell based strong coupling algorithm for fluid-structure interaction. The numerical model is first validated against an existing experiment, consisting of a rectangular box as the floating breakwater and a power take-off system installed above the breakwater, for the computation of the capture width ratio and wave transmission coefficients. Following that, an optimisation study based on the numerical model is conducted focusing on modifying the shape of the floating breakwater used in the experiment. The results indicate that by changing only the seaward side straight corner of the rectangular box to a small curve corner, the integrated system achieves significantly more wave energy extraction at the cost of only a slight increase in wave transmission.

Suggested Citation

  • Chen, Qiang & Zang, Jun & Birchall, Jonathan & Ning, Dezhi & Zhao, Xuanlie & Gao, Junliang, 2020. "On the hydrodynamic performance of a vertical pile-restrained WEC-type floating breakwater," Renewable Energy, Elsevier, vol. 146(C), pages 414-425.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:414-425
    DOI: 10.1016/j.renene.2019.06.149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119309899
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.06.149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    2. Ning, Dezhi & Zhao, Xuanlie & Göteman, Malin & Kang, Haigui, 2016. "Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: An experimental study," Renewable Energy, Elsevier, vol. 95(C), pages 531-541.
    3. He, Fang & Huang, Zhenhua & Law, Adrian Wing-Keung, 2013. "An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction," Applied Energy, Elsevier, vol. 106(C), pages 222-231.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Berrio, Y. & Rivillas-Ospina, G. & Ruiz-Martínez, G. & Arango-Manrique, A. & Ricaurte, C. & Mendoza, E. & Silva, R. & Casas, D. & Bolívar, M. & Díaz, K., 2023. "Energy conversion and beach protection: Numerical assessment of a dual-purpose WEC farm," Renewable Energy, Elsevier, vol. 219(P2).
    2. Jin, Huaqing & Zhang, Haicheng & Xu, Daolin & Jun, Ding & Ze, Sun, 2022. "Low-frequency energy capture and water wave attenuation of a hybrid WEC-breakwater with nonlinear stiffness," Renewable Energy, Elsevier, vol. 196(C), pages 1029-1047.
    3. Tournant, Paul & Perret, Gaële & Smaoui, Hassan & Sergent, Philippe & Marin, François, 2023. "Shape parameters optimisation of a quayside heaving rectangular wave energy converter," Applied Energy, Elsevier, vol. 343(C).
    4. Zhang, Hengming & Zhou, Binzhen & Vogel, Christopher & Willden, Richard & Zang, Jun & Zhang, Liang, 2020. "Hydrodynamic performance of a floating breakwater as an oscillating-buoy type wave energy converter," Applied Energy, Elsevier, vol. 257(C).
    5. Wang, Yuhan & Wang, Dongxu & Dong, Sheng, 2022. "A theoretical model for an integrated wave energy extraction system consisting of a heaving buoy and a perforated wall," Renewable Energy, Elsevier, vol. 189(C), pages 1086-1101.
    6. Cheng, Yong & Xi, Chen & Dai, Saishuai & Ji, Chunyan & Collu, Maurizio & Li, Mingxin & Yuan, Zhiming & Incecik, Atilla, 2022. "Wave energy extraction and hydroelastic response reduction of modular floating breakwaters as array wave energy converters integrated into a very large floating structure," Applied Energy, Elsevier, vol. 306(PA).
    7. Zhao, Xuanlie & Zhang, Yang & Li, Mingwei & Johanning, Lars, 2020. "Hydrodynamic performance of a Comb-Type Breakwater-WEC system: An analytical study," Renewable Energy, Elsevier, vol. 159(C), pages 33-49.
    8. Zhou, Binzhen & Zheng, Zhi & Jin, Peng & Wang, Lei & Zang, Jun, 2022. "Wave attenuation and focusing performance of parallel twin parabolic arc floating breakwaters," Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xuanlie & Ning, Dezhi, 2018. "Experimental investigation of breakwater-type WEC composed of both stationary and floating pontoons," Energy, Elsevier, vol. 155(C), pages 226-233.
    2. Xuanlie Zhao & Dezhi Ning & Chongwei Zhang & Haigui Kang, 2017. "Hydrodynamic Investigation of an Oscillating Buoy Wave Energy Converter Integrated into a Pile-Restrained Floating Breakwater," Energies, MDPI, vol. 10(5), pages 1-16, May.
    3. Huang, Shijie & Huang, Zhenhua, 2022. "Hydrodynamic performance of a row of closely-spaced bottom-sitting oscillating water columns," Renewable Energy, Elsevier, vol. 195(C), pages 344-356.
    4. Zhao, Xuanlie & Zhang, Lidong & Li, Mingwei & Johanning, Lars, 2021. "Experimental investigation on the hydrodynamic performance of a multi-chamber OWC-breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Zhang, Hengming & Zhou, Binzhen & Vogel, Christopher & Willden, Richard & Zang, Jun & Zhang, Liang, 2020. "Hydrodynamic performance of a floating breakwater as an oscillating-buoy type wave energy converter," Applied Energy, Elsevier, vol. 257(C).
    6. Zhou, Binzhen & Lin, Chusen & Huang, Xu & Zhang, Hengming & Zhao, Wenhua & Zhu, Songye & Jin, Peng, 2024. "Experimental study on the hydrodynamic performance of a multi-DOF WEC-type floating breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    7. Kara, Fuat, 2022. "Effects of a vertical wall on wave power absorption with wave energy converters arrays," Renewable Energy, Elsevier, vol. 196(C), pages 812-823.
    8. Cheng, Yong & Du, Weiming & Dai, Saishuai & Ji, Chunyan & Collu, Maurizio & Cocard, Margot & Cui, Lin & Yuan, Zhiming & Incecik, Atilla, 2022. "Hydrodynamic characteristics of a hybrid oscillating water column-oscillating buoy wave energy converter integrated into a π-type floating breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    9. Guo, Baoming & Wang, Rongquan & Ning, Dezhi & Chen, Lifen & Sulisz, Wojciech, 2020. "Hydrodynamic performance of a novel WEC-breakwater integrated system consisting of triple dual-freedom pontoons," Energy, Elsevier, vol. 209(C).
    10. Peng, Wei & Zhang, Yingnan & Zou, Qingping & Zhang, Jisheng & Li, Haoran, 2024. "Effect of varying PTO on a triple floater wave energy converter-breakwater hybrid system: An experimental study," Renewable Energy, Elsevier, vol. 224(C).
    11. Xu, Conghao & Huang, Zhenhua, 2018. "A dual-functional wave-power plant for wave-energy extraction and shore protection: A wave-flume study," Applied Energy, Elsevier, vol. 229(C), pages 963-976.
    12. Cheng, Yong & Xi, Chen & Dai, Saishuai & Ji, Chunyan & Cocard, Margot & Yuan, Zhiming & Incecik, Atilla, 2021. "Performance characteristics and parametric analysis of a novel multi-purpose platform combining a moonpool-type floating breakwater and an array of wave energy converters," Applied Energy, Elsevier, vol. 292(C).
    13. Cheng, Yong & Du, Weiming & Dai, Saishuai & Yuan, Zhiming & Incecik, Atilla, 2024. "Wave energy conversion by an array of oscillating water columns deployed along a long-flexible floating breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    14. Jin, Huaqing & Zhang, Haicheng & Xu, Daolin & Jun, Ding & Ze, Sun, 2022. "Low-frequency energy capture and water wave attenuation of a hybrid WEC-breakwater with nonlinear stiffness," Renewable Energy, Elsevier, vol. 196(C), pages 1029-1047.
    15. Wang, Chen & Zhang, Yongliang, 2021. "Hydrodynamic performance of an offshore Oscillating Water Column device mounted over an immersed horizontal plate: A numerical study," Energy, Elsevier, vol. 222(C).
    16. Doyle, Simeon & Aggidis, George A., 2021. "Experimental investigation and performance comparison of a 1 single OWC, array and M-OWC," Renewable Energy, Elsevier, vol. 168(C), pages 365-374.
    17. Chen, Zhongfei & Zhou, Binzhen & Zhang, Liang & Li, Can & Zang, Jun & Zheng, Xiongbo & Xu, Jianan & Zhang, Wanchao, 2018. "Experimental and numerical study on a novel dual-resonance wave energy converter with a built-in power take-off system," Energy, Elsevier, vol. 165(PA), pages 1008-1020.
    18. Cheng, Yong & Song, Fukai & Xi, Chen & Collu, Maurizio & Yuan, Zhiming & Incecik, Atilla, 2023. "Feasibility of integrating a very large floating structure with multiple wave energy converters combining oscillating water columns and oscillating flaps," Energy, Elsevier, vol. 274(C).
    19. He, Fang & Pan, Jiapeng & Lin, Yuan & Song, Mengxia & Zheng, Siming, 2024. "Laboratory modelling of nonlinear power take-off damping and its effects on an offshore stationary cylindrical OWC device," Energy, Elsevier, vol. 296(C).
    20. Chen Wang & Zhengzhi Deng & Pinjie Wang & Yu Yao, 2019. "Wave Power Extraction from a Dual Oscillating-Water- Column System Composed of Heave-Only and Onshore Units," Energies, MDPI, vol. 12(9), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:414-425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.