IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v132y2019icp142-156.html
   My bibliography  Save this article

Enhancement of hydrodynamic performance of an Oscillating Water Column with harbour walls

Author

Listed:
  • Daniel Raj, D.
  • Sundar, V.
  • Sannasiraj, S.A.

Abstract

A comprehensive experimental investigation on the effect of resonant length and the opening angle of harbour walls integrated with an Oscillating Water Column (OWC) under random sea state has been carried out. The random sea state is entitled to be the reference parameter for analysing the performance of the OWC under controlled conditions. The results on the variations of volume flux of water inside the OWC chamber, pneumatic pressure and relative capture width are depicted as a function of relative water depth for different configurations of the harbour walls in a dimensionless form. The presence of the harbour walls has enhanced the performance characteristics of the OWC. Further, the length and inclination of the harbour walls were varied to achieve a relative capture width, RCW (ratio of output power to the input power) of 75% more than that from the OWC without harbour walls. The details of the models, experimental set-up, testing procedure, results and discussion on the aforementioned study are presented.

Suggested Citation

  • Daniel Raj, D. & Sundar, V. & Sannasiraj, S.A., 2019. "Enhancement of hydrodynamic performance of an Oscillating Water Column with harbour walls," Renewable Energy, Elsevier, vol. 132(C), pages 142-156.
  • Handle: RePEc:eee:renene:v:132:y:2019:i:c:p:142-156
    DOI: 10.1016/j.renene.2018.07.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118308863
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.07.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Ashlin, S. & Sundar, V. & Sannasiraj, S.A., 2016. "Effects of bottom profile of an oscillating water column device on its hydrodynamic characteristics," Renewable Energy, Elsevier, vol. 96(PA), pages 341-353.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iván López & Rodrigo Carballo & David Mateo Fouz & Gregorio Iglesias, 2021. "Design Selection and Geometry in OWC Wave Energy Converters for Performance," Energies, MDPI, vol. 14(6), pages 1-18, March.
    2. Gubesch, Eric & Abdussamie, Nagi & Penesis, Irene & Chin, Christopher, 2022. "Maximising the hydrodynamic performance of offshore oscillating water column wave energy converters," Applied Energy, Elsevier, vol. 308(C).
    3. Mobin Masoomi & Mahdi Yousefifard & Amir Mosavi, 2021. "Efficiency Assessment of an Amended Oscillating Water Column Using OpenFOAM," Sustainability, MDPI, vol. 13(10), pages 1-23, May.
    4. Zhao, Xuanlie & Zhang, Yang & Li, Mingwei & Johanning, Lars, 2020. "Hydrodynamic performance of a Comb-Type Breakwater-WEC system: An analytical study," Renewable Energy, Elsevier, vol. 159(C), pages 33-49.
    5. Gubesch, Eric & Abdussamie, Nagi & Penesis, Irene & Chin, Christopher, 2022. "Effects of mooring configurations on the hydrodynamic performance of a floating offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    6. Tomás Cabral & Daniel Clemente & Paulo Rosa-Santos & Francisco Taveira-Pinto & Tiago Morais & Filipe Belga & Henrique Cestaro, 2020. "Performance Assessment of a Hybrid Wave Energy Converter Integrated into a Harbor Breakwater," Energies, MDPI, vol. 13(1), pages 1-22, January.
    7. Calheiros-Cabral, Tomás & Clemente, Daniel & Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Ramos, Victor & Morais, Tiago & Cestaro, Henrique, 2020. "Evaluation of the annual electricity production of a hybrid breakwater-integrated wave energy converter," Energy, Elsevier, vol. 213(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Çelik, Anıl & Altunkaynak, Abdüsselam, 2021. "An in depth experimental investigation into effects of incident wave characteristics front wall opening and PTO damping on the water column displacement and air differential pressure in an OWC chamber," Energy, Elsevier, vol. 230(C).
    2. Mobin Masoomi & Mahdi Yousefifard & Amir Mosavi, 2021. "Efficiency Assessment of an Amended Oscillating Water Column Using OpenFOAM," Sustainability, MDPI, vol. 13(10), pages 1-23, May.
    3. Güths, A.K. & Teixeira, P.R.F. & Didier, E., 2022. "A novel geometry of an onshore Oscillating Water Column wave energy converter," Renewable Energy, Elsevier, vol. 201(P1), pages 938-949.
    4. Kharati-Koopaee, Masoud & Fathi-Kelestani, Arman, 2020. "Assessment of oscillating water column performance: Influence of wave steepness at various chamber lengths and bottom slopes," Renewable Energy, Elsevier, vol. 147(P1), pages 1595-1608.
    5. Carlo, Lilia & Iuppa, Claudio & Faraci, Carla, 2023. "A numerical-experimental study on the hydrodynamic performance of a U-OWC wave energy converter," Renewable Energy, Elsevier, vol. 203(C), pages 89-101.
    6. Taherian Haghighi, Ali & Nikseresht, Amir H. & Hayati, Mohammad, 2021. "Numerical analysis of hydrodynamic performance of a dual-chamber Oscillating Water Column," Energy, Elsevier, vol. 221(C).
    7. Louise O’Boyle & Björn Elsäßer & Trevor Whittaker, 2017. "Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays," Sustainability, MDPI, vol. 9(1), pages 1-16, January.
    8. Ayrton Alfonso Medina Rodríguez & Gregorio Posada Vanegas & Rodolfo Silva Casarín & Edgar Gerardo Mendoza Baldwin & Beatriz Edith Vega Serratos & Felipe Ernesto Puc Cutz & Enrique Alejandro Mangas Che, 2022. "Experimental Investigation of the Hydrodynamic Performance of Land-Fixed Nearshore and Onshore Oscillating Water Column Systems with a Thick Front Wall," Energies, MDPI, vol. 15(7), pages 1-26, March.
    9. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    10. Stefania Naty & Antonino Viviano & Enrico Foti, 2016. "Wave Energy Exploitation System Integrated in the Coastal Structure of a Mediterranean Port," Sustainability, MDPI, vol. 8(12), pages 1-19, December.
    11. Medina Rodríguez, Ayrton Alfonso & Silva Casarín, Rodolfo & Blanco Ilzarbe, Jesús María, 2022. "The influence of oblique waves on the hydrodynamic efficiency of an onshore OWC wave energy converter," Renewable Energy, Elsevier, vol. 183(C), pages 687-707.
    12. Hayati, Mohammad & Nikseresht, Amir H. & Haghighi, Ali Taherian, 2020. "Sequential optimization of the geometrical parameters of an OWC device based on the specific wave characteristics," Renewable Energy, Elsevier, vol. 161(C), pages 386-394.
    13. Wang, Chen & Zhang, Yongliang, 2021. "Hydrodynamic performance of an offshore Oscillating Water Column device mounted over an immersed horizontal plate: A numerical study," Energy, Elsevier, vol. 222(C).
    14. Elhanafi, Ahmed & Fleming, Alan & Macfarlane, Gregor & Leong, Zhi, 2016. "Numerical energy balance analysis for an onshore oscillating water column–wave energy converter," Energy, Elsevier, vol. 116(P1), pages 539-557.
    15. Wang, Chen & Zhang, Yongliang, 2021. "Numerical investigation on the wave power extraction for a 3D dual-chamber oscillating water column system composed of two closely connected circular sub-units," Applied Energy, Elsevier, vol. 295(C).
    16. Mohapatra, Piyush & Vijay, K.G. & Bhattacharyya, Anirban & Sahoo, Trilochan, 2023. "Influence of distinct bottom geometries on the hydrodynamic performance of an OWC device," Energy, Elsevier, vol. 277(C).
    17. Liu, Zhen & Xu, Chuanli & Qu, Na & Cui, Ying & Kim, Kilwon, 2020. "Overall performance evaluation of a model-scale OWC wave energy converter," Renewable Energy, Elsevier, vol. 149(C), pages 1325-1338.
    18. Mayon, Robert & Ning, Dezhi & Zhang, Chongwei & Chen, Lifen & Wang, Rongquan, 2021. "Wave energy capture by an omnidirectional point sink oscillating water column system," Applied Energy, Elsevier, vol. 304(C).
    19. Masoomi, Mobin & Sarlak, Hamid & Rezanejad, Kourosh, 2023. "Hydrodynamic performance analysis of a new hybrid wave energy converter system using OpenFOAM," Energy, Elsevier, vol. 269(C).
    20. Deng, Zhengzhi & Wang, Lin & Zhao, Xizeng & Wang, Peng, 2020. "Wave power extraction by a nearshore oscillating water column converter with a surging lip-wall," Renewable Energy, Elsevier, vol. 146(C), pages 662-674.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:132:y:2019:i:c:p:142-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.