IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v163y2021icp22-40.html
   My bibliography  Save this article

Effect of geo-climatic conditions and pipe material on heating performance of earth-air heat exchangers

Author

Listed:
  • Lekhal, Mohammed Cherif
  • Benzaama, Mohammed-Hichem
  • Kindinis, Andrea
  • Mokhtari, Abderahmane-Mejedoub
  • Belarbi, Rafik

Abstract

Climatological and geological site classification intended for Earth-Air Heat Exchanger Technology (EAHE) is an important factor in the design, implementation and optimal operation of such system. In this context, this paper presents an investigation on the heating performance and operating feasibility of two EAHEs in three different geo-climatic regions in Algeria. First, the performances of the EAHEs were experimentally studied in the temperate Oran climate and the corresponding results were used for validation of the numerical part. The experiment allowed to analyze the effect of the pipe material on the performance of the two EAHEs that are made of different materials (PVC and Zinc). After validation of the numerical part, the study was extended to three different climates including a temperate climate for Oran, an arid climate for Bechar and a steppe climate for El-Bayadh cities. For these climates, the heating study is rarely considered in this context. Furthermore, a sensitivity analysis was conducted in order to evaluate the operating feasibility of the EAHEs in the considered regions. The results revealed that the Zinc EAHE is more efficient in a temperate climate with a COP of 9.5 than in an arid or steppe climate with a COP of 8.2 or 8.1, respectively. However, the PVC EAHE is much better in an arid climate with a COP of 9.4 than in a temperate or steppe climate with a COP of 7.6 or 8.4, respectively. Otherwise, both EAHEs exhibited similar behavior in a steppe climate. The results show that the thermal performance of EAHE mainly depends on geo-climatic conditions and the type of pipe material.

Suggested Citation

  • Lekhal, Mohammed Cherif & Benzaama, Mohammed-Hichem & Kindinis, Andrea & Mokhtari, Abderahmane-Mejedoub & Belarbi, Rafik, 2021. "Effect of geo-climatic conditions and pipe material on heating performance of earth-air heat exchangers," Renewable Energy, Elsevier, vol. 163(C), pages 22-40.
  • Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:22-40
    DOI: 10.1016/j.renene.2020.08.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120312878
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.08.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peretti, Clara & Zarrella, Angelo & De Carli, Michele & Zecchin, Roberto, 2013. "The design and environmental evaluation of earth-to-air heat exchangers (EAHE). A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 107-116.
    2. Li, Hui & Ni, Long & Liu, Guang & Zhao, Zisang & Yao, Yang, 2019. "Feasibility study on applications of an Earth-air Heat Exchanger (EAHE) for preheating fresh air in severe cold regions," Renewable Energy, Elsevier, vol. 133(C), pages 1268-1284.
    3. Mihalakakou, G, 2003. "On the heating potential of a single buried pipe using deterministic and intelligent techniques," Renewable Energy, Elsevier, vol. 28(6), pages 917-927.
    4. Hollmuller, Pierre & Lachal, Bernard, 2014. "Air–soil heat exchangers for heating and cooling of buildings: Design guidelines, potentials and constraints, system integration and global energy balance," Applied Energy, Elsevier, vol. 119(C), pages 476-487.
    5. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2015. "Ground coupled heat exchangers: A review and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 83-92.
    6. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    7. Badescu, Viorel, 2007. "Simple and accurate model for the ground heat exchanger of a passive house," Renewable Energy, Elsevier, vol. 32(5), pages 845-855.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue, Yingjun & Yan, Zengfeng & Ni, Pingan & Lei, Fuming & Yao, Shanshan, 2024. "Machine learning-based multi-performance prediction and analysis of Earth-Air Heat Exchanger," Renewable Energy, Elsevier, vol. 227(C).
    2. Di Qi & Chuangyao Zhao & Shixiong Li & Ran Chen & Angui Li, 2021. "Numerical Assessment of Earth to Air Heat Exchanger with Variable Humidity Conditions in Greenhouses," Energies, MDPI, vol. 14(5), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    2. Diana D’Agostino & Francesco Esposito & Adriana Greco & Claudia Masselli & Francesco Minichiello, 2020. "Parametric Analysis on an Earth-to-Air Heat Exchanger Employed in an Air Conditioning System," Energies, MDPI, vol. 13(11), pages 1-24, June.
    3. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    4. H.Ali, Mohammed & Kurjak, Zoltan & Beke, Janos, 2023. "Investigation of earth air heat exchangers functioning in arid locations using Matlab/Simulink," Renewable Energy, Elsevier, vol. 209(C), pages 632-643.
    5. Diana D’Agostino & Francesco Esposito & Adriana Greco & Claudia Masselli & Francesco Minichiello, 2020. "The Energy Performances of a Ground-to-Air Heat Exchanger: A Comparison Among Köppen Climatic Areas," Energies, MDPI, vol. 13(11), pages 1-25, June.
    6. Bordoloi, Namrata & Sharma, Aashish & Nautiyal, Himanshu & Goel, Varun, 2018. "An intense review on the latest advancements of Earth Air Heat Exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 261-280.
    7. Rachana Vidhi, 2018. "A Review of Underground Soil and Night Sky as Passive Heat Sink: Design Configurations and Models," Energies, MDPI, vol. 11(11), pages 1-24, October.
    8. Yue, Yingjun & Yan, Zengfeng & Ni, Pingan & Lei, Fuming & Yao, Shanshan, 2024. "Machine learning-based multi-performance prediction and analysis of Earth-Air Heat Exchanger," Renewable Energy, Elsevier, vol. 227(C).
    9. Li, Yongcai & Long, Tianhe & Bai, Xi & Wang, Linfeng & Li, Wuyan & Liu, Shuli & Lu, Jun & Cheng, Yong & Ye, Kai & Huang, Sheng, 2021. "An experimental investigation on the passive ventilation and cooling performance of an integrated solar chimney and earth–air heat exchanger," Renewable Energy, Elsevier, vol. 175(C), pages 486-500.
    10. Taurines, Kevin & Giroux-Julien, Stéphanie & Farid, Mohammed & Ménézo, Christophe, 2021. "Numerical modelling of a building integrated earth-to-air heat exchanger," Applied Energy, Elsevier, vol. 296(C).
    11. Amanowicz, Łukasz, 2018. "Influence of geometrical parameters on the flow characteristics of multi-pipe earth-to-air heat exchangers – experimental and CFD investigations," Applied Energy, Elsevier, vol. 226(C), pages 849-861.
    12. Benhammou, Mohammed & Draoui, Belkacem, 2015. "Parametric study on thermal performance of earth-to-air heat exchanger used for cooling of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 348-355.
    13. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2015. "Ground coupled heat exchangers: A review and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 83-92.
    14. Selamat, Salsuwanda & Miyara, Akio & Kariya, Keishi, 2016. "Numerical study of horizontal ground heat exchangers for design optimization," Renewable Energy, Elsevier, vol. 95(C), pages 561-573.
    15. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    16. Tahery, Danial & Roshandel, Ramin & Avami, Akram, 2021. "An integrated dynamic model for evaluating the influence of ground to air heat transfer system on heating, cooling and CO2 supply in Greenhouses: Considering crop transpiration," Renewable Energy, Elsevier, vol. 173(C), pages 42-56.
    17. Qin, Di & Liu, Zhengxuan & Zhou, Yuekuan & Yan, Zhongjun & Chen, Dachuan & Zhang, Guoqiang, 2021. "Dynamic performance of a novel air-soil heat exchanger coupling with diversified energy storage components—modelling development, experimental verification, parametrical design and robust operation," Renewable Energy, Elsevier, vol. 167(C), pages 542-557.
    18. Gomat, Landry Jean Pierre & Elombo Motoula, Smaël Magloire & M’Passi-Mabiala, Bernard, 2020. "An analytical method to evaluate the impact of vertical part of an earth-air heat exchanger on the whole system," Renewable Energy, Elsevier, vol. 162(C), pages 1005-1016.
    19. Amanowicz, Łukasz & Wojtkowiak, Janusz, 2020. "Approximated flow characteristics of multi-pipe earth-to-air heat exchangers for thermal analysis under variable airflow conditions," Renewable Energy, Elsevier, vol. 158(C), pages 585-597.
    20. Eduardo de la Rocha Camba & Fontina Petrakopoulou, 2020. "Earth-Cooling Air Tunnels for Thermal Power Plants: Initial Design by CFD Modelling," Energies, MDPI, vol. 13(4), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:163:y:2021:i:c:p:22-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.