IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v221y2024ics0960148123017251.html
   My bibliography  Save this article

Effect of catholyte on performance of photosynthetic microbial fuel cell for wastewater treatment and energy recovery

Author

Listed:
  • Ullah, Zia
  • Zeshan,

Abstract

The performance of photosynthetic microbial fuel cell (PMFC) was assessed for wastewater treatment and energy recovery using two different catholytes; untreated domestic wastewater (UDW) and wetland treated wastewater (WTW). The performance was investigated under continuous light and 12/12 h light/dark cycle, employing Scenedesmus sp. as a biocatalyst. The results showed that PMFC with UDW as the catholyte outperformed the WTW under both types of illumination. Under continuous illumination, the PMFC with UDW achieved a maximum working voltage 33 % higher than that of WTW. The rates of chemical oxygen demand (COD) and nutrient removal in the cathode chamber were significantly higher for PMFC with UDW catholyte. Maximum dissolved oxygen (DO) reached 10 and 8.4 mg/L for UDW and WTW, respectively, with corresponding algae concentrations of 5165 and 3130 mg/L. Under the light/dark cycle, both the working voltage and DO concentration exhibited a diurnal pattern. The maximum algal growth, DO and power output in UDW were higher than WTW under 12/12 h light-dark cycle; however, these values remained lower compared to continuous illumination. These results demonstrate the feasibility of PMFC for both untreated and secondary treated domestic wastewater as catholytes.

Suggested Citation

  • Ullah, Zia & Zeshan,, 2024. "Effect of catholyte on performance of photosynthetic microbial fuel cell for wastewater treatment and energy recovery," Renewable Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123017251
    DOI: 10.1016/j.renene.2023.119810
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123017251
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119810?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Xuan & Zhan, Yali & Chen, Chunmao & Cai, Bin & Wang, Yu & Guo, Shaohui, 2016. "Influence of packing material characteristics on the performance of microbial fuel cells using petroleum refinery wastewater as fuel," Renewable Energy, Elsevier, vol. 87(P1), pages 437-444.
    2. Jiayin Ling & Yanbin Xu & Chuansheng Lu & Weikang Lai & Guangyan Xie & Li Zheng & Manjunatha P. Talawar & Qingping Du & Gangyi Li, 2019. "Enhancing Stability of Microalgae Biocathode by a Partially Submerged Carbon Cloth Electrode for Bioenergy Production from Wastewater," Energies, MDPI, vol. 12(17), pages 1-14, August.
    3. Elalami, D. & Carrere, H. & Monlau, F. & Abdelouahdi, K. & Oukarroum, A. & Barakat, A., 2019. "Pretreatment and co-digestion of wastewater sludge for biogas production: Recent research advances and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. Qi, Lijuan & Wu, Jiansong & Chen, Ye & Wen, Qing & Xu, Haitao & Wang, Yuyang, 2020. "Shape-controllable binderless self-supporting hydrogel anode for microbial fuel cells," Renewable Energy, Elsevier, vol. 156(C), pages 1325-1335.
    5. Wang, Yuyang & Zhu, Lin & An, Lijuan, 2020. "Electricity generation and storage in microbial fuel cells with porous polypyrrole-base composite modified carbon brush anodes," Renewable Energy, Elsevier, vol. 162(C), pages 2220-2226.
    6. Liu, Shu-Hui & You, Shang-Sian & Lin, Chi-Wen & Cheng, Yu-Shen, 2022. "Optimizing biochar and conductive carbon black composites as cathode catalysts for microbial fuel cells to improve isopropanol removal and power generation," Renewable Energy, Elsevier, vol. 199(C), pages 1318-1328.
    7. Hu, Jianjun & Zhang, Quanguo & Lee, Duu-Jong & Ngo, Huu Hao, 2018. "Feasible use of microbial fuel cells for pollution treatment," Renewable Energy, Elsevier, vol. 129(PB), pages 824-829.
    8. Wang, Fang & Zhang, Deli & Shen, Xiuli & Liu, Weidong & Yi, Weiming & Li, Zhihe & Liu, Shanjian, 2019. "Synchronously electricity generation and degradation of biogas slurry using microbial fuel cell," Renewable Energy, Elsevier, vol. 142(C), pages 158-166.
    9. Bajracharya, Suman & Sharma, Mohita & Mohanakrishna, Gunda & Dominguez Benneton, Xochitl & Strik, David P.B.T.B. & Sarma, Priyangshu M. & Pant, Deepak, 2016. "An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond," Renewable Energy, Elsevier, vol. 98(C), pages 153-170.
    10. Lobato, Justo & González del Campo, Araceli & Fernández, Francisco J. & Cañizares, Pablo & Rodrigo, Manuel A., 2013. "Lagooning microbial fuel cells: A first approach by coupling electricity-producing microorganisms and algae," Applied Energy, Elsevier, vol. 110(C), pages 220-226.
    11. Chowdhury, Mohammad Asaduzzaman & Ahmed, Shamim & Hossain, Nayem & Rana, Md. Masud & Aoyon, Hasanuzzaman & Ali, Md. Ramjan & Islam, Syed Rokibul & Hossain, Md. Jonayed & Chowdhury, Deep, 2023. "Enhancement of microbial fuel cell performance by introducing dosing materials in waste water to increase microorganism growth," Renewable Energy, Elsevier, vol. 219(P2).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shirvani, Bita & Rahimi, Masoud & Zinadini, Sirus, 2024. "Exploring the potential of anti-bacterial and conductive ZnO–Al2O3/SPES proton exchange membrane applied in MFC for sustainable energy generation and sugar beet industry effluent treatment," Renewable Energy, Elsevier, vol. 231(C).
    2. Wang, Fang & Zhang, Deli & Shen, Xiuli & Liu, Weidong & Yi, Weiming & Li, Zhihe & Liu, Shanjian, 2019. "Synchronously electricity generation and degradation of biogas slurry using microbial fuel cell," Renewable Energy, Elsevier, vol. 142(C), pages 158-166.
    3. Xu, Haitao & Du, Yanan & Chen, Ye & Wen, Qing & Lin, Cunguo & Zheng, Jiyong & Qiu, Zhenghui, 2022. "Electricity generation in simulated benthic microbial fuel cell with conductive polyaniline-polypyrole composite hydrogel anode," Renewable Energy, Elsevier, vol. 183(C), pages 242-250.
    4. Sanjeet Mehariya & Rahul Kumar Goswami & Pradeep Verma & Roberto Lavecchia & Antonio Zuorro, 2021. "Integrated Approach for Wastewater Treatment and Biofuel Production in Microalgae Biorefineries," Energies, MDPI, vol. 14(8), pages 1-26, April.
    5. Fischer, Fabian, 2018. "Photoelectrode, photovoltaic and photosynthetic microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 16-27.
    6. Maity, Jyoti Prakash & Hou, Chia-Peng & Majumder, Dip & Bundschuh, Jochen & Kulp, Thomas R. & Chen, Chien-Yen & Chuang, Lu-Te & Nathan Chen, Ching-Nen & Jean, Jiin-Shuh & Yang, Tsui-Chu & Chen, Chien-, 2014. "The production of biofuel and bioelectricity associated with wastewater treatment by green algae," Energy, Elsevier, vol. 78(C), pages 94-103.
    7. Theofilos Kamperidis & Asimina Tremouli & Antonis Peppas & Gerasimos Lyberatos, 2022. "A 2D Modelling Approach for Predicting the Response of a Two-Chamber Microbial Fuel Cell to Substrate Concentration and Electrolyte Conductivity Changes," Energies, MDPI, vol. 15(4), pages 1-15, February.
    8. Tang, Raymond Chong Ong & Jang, Jer-Huan & Lan, Tzu-Hsuan & Wu, Jung-Chen & Yan, Wei-Mon & Sangeetha, Thangavel & Wang, Chin-Tsan & Ong, Hwai Chyuan & Ong, Zhi Chao, 2020. "Review on design factors of microbial fuel cells using Buckingham's Pi Theorem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    9. Anusha Ganta & Yasser Bashir & Sovik Das, 2022. "Dairy Wastewater as a Potential Feedstock for Valuable Production with Concurrent Wastewater Treatment through Microbial Electrochemical Technologies," Energies, MDPI, vol. 15(23), pages 1-34, November.
    10. Wetser, Koen & Sudirjo, Emilius & Buisman, Cees J.N. & Strik, David P.B.T.B., 2015. "Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode," Applied Energy, Elsevier, vol. 137(C), pages 151-157.
    11. Aftab Ali Kubar & Qing Huang & Kashif Ali Kubar & Muhammad Amjad Khan & Muhammad Sajjad & Sumaira Gul & Chen Yang & Qingqing Wang & Genmao Guo & Ghulam Mustafa Kubar & Muhammad Ibrahim Kubar & Niaz Ah, 2022. "Ammonium and Phosphate Recovery from Biogas Slurry: Multivariate Statistical Analysis Approach," Sustainability, MDPI, vol. 14(9), pages 1-20, May.
    12. Kabutey, Felix Tetteh & Zhao, Qingliang & Wei, Liangliang & Ding, Jing & Antwi, Philip & Quashie, Frank Koblah & Wang, Weiye, 2019. "An overview of plant microbial fuel cells (PMFCs): Configurations and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 402-414.
    13. Kumar, Atul & Samadder, S.R., 2020. "Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review," Energy, Elsevier, vol. 197(C).
    14. Sun, Fengjie & Chen, Ye & Wen, Qing & Yang, Yang, 2024. "Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) bioanodes in Co-doped modified microbial fuel cell promote sulfamethoxine degradation with high enrichment of electroactive bacteria and extrace," Renewable Energy, Elsevier, vol. 232(C).
    15. Ismail, Zainab Z. & Habeeb, Ali A., 2017. "Experimental and modeling study of simultaneous power generation and pharmaceutical wastewater treatment in microbial fuel cell based on mobilized biofilm bearers," Renewable Energy, Elsevier, vol. 101(C), pages 1256-1265.
    16. Arpita Nandy & Mohita Sharma & Senthil Velan Venkatesan & Nicole Taylor & Lisa Gieg & Venkataraman Thangadurai, 2019. "Comparative Evaluation of Coated and Non-Coated Carbon Electrodes in a Microbial Fuel Cell for Treatment of Municipal Sludge," Energies, MDPI, vol. 12(6), pages 1-14, March.
    17. Jiseon You & Lauren Wallis & Nevena Radisavljevic & Grzegorz Pasternak & Vincenzo M. Sglavo & Martin M Hanczyc & John Greenman & Ioannis Ieropoulos, 2019. "A Comprehensive Study of Custom-Made Ceramic Separators for Microbial Fuel Cells: Towards “Living” Bricks," Energies, MDPI, vol. 12(21), pages 1-13, October.
    18. Wu, Shiqiang & Patil, Sunil A. & Chen, Shuiliang, 2018. "Auto-feeding microbial fuel cell inspired by transpiration of plants," Applied Energy, Elsevier, vol. 225(C), pages 934-939.
    19. Birjandi, Noushin & Younesi, Habibollah & Ghoreyshi, Ali Asghar & Rahimnejad, Mostafa, 2020. "Enhanced medicinal herbs wastewater treatment in continuous flow bio-electro-Fenton operations along with power generation," Renewable Energy, Elsevier, vol. 155(C), pages 1079-1090.
    20. Liu, Zhiyuan & Li, Yan & Sun, Yong & Feng, Fang & Tagawa, Kotaro, 2023. "Preparation of biochar-based photothermal superhydrophobic coating based on corn straw biogas residue and blade anti-icing performance by wind tunnel test," Renewable Energy, Elsevier, vol. 210(C), pages 618-626.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123017251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.