IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v192y2020ics036054421932359x.html
   My bibliography  Save this article

CeO2-modified CaO/Ca12Al14O33 bi-functional material for CO2 capture and H2 production in sorption-enhanced steam gasification of biomass

Author

Listed:
  • Yan, Xianyao
  • Li, Yingjie
  • Ma, Xiaotong
  • Bian, Zhiguo
  • Zhao, Jianli
  • Wang, Zeyan

Abstract

A novel CeO2-modified CaO/Ca12Al14O33 bi-functional material fabricated by wet-mixing method was used in sorption-enhanced steam gasification of biomass for H2 production. The CO2 capture performance of the bi-functional material was investigated during the multiple carbonation/calcination cycles in a dual fixed-bed reactor. H2 production from the sorption-enhanced steam gasification of bagasse char using CeO2-modified CaO/Ca12Al14O33 was studied. When the mass ratio of CaO/Ca12Al14O33/CeO2 is 75:10:15, CO2 capture capacity of CeO2-modified CaO/Ca12Al14O33 reaches 0.48 g/g after 20 cycles under the realistic calcination condition, which is 30% higher than that of CaO/Ca12Al14O33. The average H2 concentration and yield using CeO2-modified CaO/Ca12Al14O33 during 10 cycles achieve 81.1 vol% and 0.124 L/g, which are 17.4% and 47.3% higher than those using CaO/Ca12Al14O33, respectively. CeO2 in CeO2-modified CaO/Ca12Al14O33 enhances water gas shift and steam methane reforming reactions. CeO2-modified CaO/Ca12Al14O33 possesses stronger basicity, and Ce3+ in the surface creates oxygen vacancies and promotes the conductivity of lattice oxygen, which are favorable for CO2 capture. CeO2 improves the cyclic stability of CaO/Ca12Al14O33 and stabilizes pores in 10–100 nm in diameter, which facilitates CO2 capture and H2 production. Thus, CeO2-modified CaO/Ca12Al14O33 appears promising for H2 production from the sorption-enhanced steam gasification of biomass.

Suggested Citation

  • Yan, Xianyao & Li, Yingjie & Ma, Xiaotong & Bian, Zhiguo & Zhao, Jianli & Wang, Zeyan, 2020. "CeO2-modified CaO/Ca12Al14O33 bi-functional material for CO2 capture and H2 production in sorption-enhanced steam gasification of biomass," Energy, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:energy:v:192:y:2020:i:c:s036054421932359x
    DOI: 10.1016/j.energy.2019.116664
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421932359X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116664?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ram, Narasimhan Kodanda & Singh, Nameirakpam Rajesh & Raman, Perumal & Kumar, Atul & Kaushal, Priyanka, 2019. "A detailed experimental analysis of air–steam gasification in a dual fired downdraft biomass gasifier enabling hydrogen enrichment in the producer gas," Energy, Elsevier, vol. 187(C).
    2. Zhang, Wan & Li, Yingjie & He, Zirui & Ma, Xiaotong & Song, Haiping, 2017. "CO2 capture by carbide slag calcined under high-concentration steam and energy requirement in calcium looping conditions," Applied Energy, Elsevier, vol. 206(C), pages 869-878.
    3. Yang, Shiliang & Wang, Hua & Wei, Yonggang & Hu, Jianhang & Chew, Jia Wei, 2019. "Eulerian-Lagrangian simulation of air-steam biomass gasification in a three-dimensional bubbling fluidized gasifier," Energy, Elsevier, vol. 181(C), pages 1075-1093.
    4. Sansaniwal, S.K. & Pal, K. & Rosen, M.A. & Tyagi, S.K., 2017. "Recent advances in the development of biomass gasification technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 363-384.
    5. Nzihou, Ange & Stanmore, Brian & Lyczko, Nathalie & Minh, Doan Pham, 2019. "The catalytic effect of inherent and adsorbed metals on the fast/flash pyrolysis of biomass: A review," Energy, Elsevier, vol. 170(C), pages 326-337.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yuzhuo & Wu, Jun Jie, 2023. "Thermochemical conversion of biomass: Potential future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    2. García, R. & Gil, M.V. & Rubiera, F. & Chen, D. & Pevida, C., 2021. "Renewable hydrogen production from biogas by sorption enhanced steam reforming (SESR): A parametric study," Energy, Elsevier, vol. 218(C).
    3. Wang, Chao & Liao, Mingzheng & Jiang, Zhiqiang & Liang, Bo & Weng, Jiahong & Song, Qingbin & Zhao, Ming & Chen, Ying & Lei, Libin, 2022. "Sorption-enhanced propane partial oxidation hydrogen production for solid oxide fuel cell (SOFC) applications," Energy, Elsevier, vol. 247(C).
    4. Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.
    5. Liu, Rui & Li, Chongcong & Zheng, Jinhao & Xue, Feilong & Yang, Mingjun & Zhang, Yan, 2023. "Hydrogen-rich syngas production via sorption-enhanced steam gasification of biomass using FexNiyCaO bi-functional materials," Energy, Elsevier, vol. 281(C).
    6. Xiaoquan Zhou & Liguo Yang & Xiaoxu Fan & Xuanyou Li, 2023. "Experimental Study on the Preparation of Hydrogen-Rich Gas by Gasifying of Traditional Chinese Medicine Residue in a DFB Based on Calcium Looping," Energies, MDPI, vol. 16(11), pages 1-13, May.
    7. Sun, Zhao & Hu, Chenfeng & Zhang, Rongjun & Li, Hongwei & Wu, Yu & Sun, Zhiqiang, 2023. "Simulation of the deoxygenated and decarburized biomass cascade utilization system for comprehensive upgrading of green hydrogen generation," Renewable Energy, Elsevier, vol. 219(P2).
    8. Xiao Liang & Huichao Chen, 2021. "Utilization of biomass to promote calcium‐based sorbents for CO2 capture," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(5), pages 837-855, October.
    9. Yan, Xianyao & Li, Yingjie & Sun, Chaoying & Zhang, Chunxiao & Yang, Liguo & Fan, Xiaoxu & Chu, Leizhe, 2022. "Enhanced H2 production from steam gasification of biomass by red mud-doped Ca-Al-Ce bi-functional material," Applied Energy, Elsevier, vol. 312(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ram, Narasimhan Kodanda & Singh, Nameirakpam Rajesh & Raman, Perumal & Kumar, Atul & Kaushal, Priyanka, 2020. "Experimental study on performance analysis of an internal combustion engine operated on hydrogen-enriched producer gas from the air–steam gasification," Energy, Elsevier, vol. 205(C).
    2. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    3. Zhong, Hanbin & Xiong, Qingang & Yin, Lina & Zhang, Juntao & Zhu, Yuqin & Liang, Shengrong & Niu, Ben & Zhang, Xinyu, 2020. "CFD-based reduced-order modeling of fluidized-bed biomass fast pyrolysis using artificial neural network," Renewable Energy, Elsevier, vol. 152(C), pages 613-626.
    4. Du, Shilin & Shu, Rui & Guo, Feiqiang & Mao, Songbo & Bai, Jiaming & Qian, Lin & Xin, Chengyun, 2022. "Porous coal char-based catalyst from coal gangue and lignite with high metal contents in the catalytic cracking of biomass tar," Energy, Elsevier, vol. 249(C).
    5. Bassey, Uduak & Sarquah, Khadija & Hartmann, Michael & Tom, Abasi-ofon & Beck, Gesa & Antwi, Edward & Narra, Satyanarayana & Nelles, Michael, 2023. "Thermal treatment options for single-use, multilayered and composite waste plastics in Africa," Energy, Elsevier, vol. 270(C).
    6. Patrik Šuhaj & Jakub Husár & Juma Haydary, 2020. "Gasification of RDF and Its Components with Tire Pyrolysis Char as Tar-Cracking Catalyst," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    7. Teng, Su & Hamrang, Farzad & Ashraf Talesh, Seyed Saman, 2021. "Economic performance assessment of a novel combined power generation cycle," Energy, Elsevier, vol. 231(C).
    8. Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    9. Kim, Jun Young & Kim, Dongjae & Li, Zezhong John & Dariva, Claudio & Cao, Yankai & Ellis, Naoko, 2023. "Predicting and optimizing syngas production from fluidized bed biomass gasifiers: A machine learning approach," Energy, Elsevier, vol. 263(PC).
    10. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    11. Monteiro, Eliseu & Ismail, Tamer M. & Ramos, Ana & Abd El-Salam, M. & Brito, Paulo & Rouboa, Abel, 2018. "Experimental and modeling studies of Portuguese peach stone gasification on an autothermal bubbling fluidized bed pilot plant," Energy, Elsevier, vol. 142(C), pages 862-877.
    12. Mariyam, Sabah & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish. R & McKay, Gordon, 2022. "A critical review on co-gasification and co-pyrolysis for gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    14. Moritz Wegener & Antonio Isalgué & Anders Malmquist & Andrew Martin, 2019. "3E-Analysis of a Bio-Solar CCHP System for the Andaman Islands, India—A Case Study," Energies, MDPI, vol. 12(6), pages 1-19, March.
    15. Andrius Tamošiūnas & Ajmia Chouchène & Pranas Valatkevičius & Dovilė Gimžauskaitė & Mindaugas Aikas & Rolandas Uscila & Makrem Ghorbel & Mejdi Jeguirim, 2017. "The Potential of Thermal Plasma Gasification of Olive Pomace Charcoal," Energies, MDPI, vol. 10(5), pages 1-14, May.
    16. Bai, Zhang & Gu, Yucheng & Wang, Shuoshuo & Jiang, Tieliu & Kong, Debin & Li, Qi, 2023. "Applying the solar solid particles as heat carrier to enhance the solar-driven biomass gasification with dynamic operation power generation performance analysis," Applied Energy, Elsevier, vol. 351(C).
    17. Shayan, E. & Zare, V. & Mirzaee, I., 2019. "On the use of different gasification agents in a biomass fueled SOFC by integrated gasifier: A comparative exergo-economic evaluation and optimization," Energy, Elsevier, vol. 171(C), pages 1126-1138.
    18. Pio, D.T. & Tarelho, L.A.C., 2021. "Industrial gasification systems (>3 MWth) for bioenergy in Europe: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    19. Alexander N. Kozlov & Nikita V. Tomin & Denis N. Sidorov & Electo E. S. Lora & Victor G. Kurbatsky, 2020. "Optimal Operation Control of PV-Biomass Gasifier-Diesel-Hybrid Systems Using Reinforcement Learning Techniques," Energies, MDPI, vol. 13(10), pages 1-20, May.
    20. Li, C.Y. & Deethayat, T. & Wu, J.Y. & Kiatsiriroat, T. & Wang, R.Z., 2018. "Simulation and evaluation of a biomass gasification-based combined cooling, heating, and power system integrated with an organic Rankine cycle," Energy, Elsevier, vol. 158(C), pages 238-255.

    More about this item

    Keywords

    Sorption-enhanced steam gasification; Bagasse char; CO2 capture; H2 production; Bi-functional material; CeO2-Modified CaO/Ca12Al14O33;
    All these keywords.

    JEL classification:

    • H2 - Public Economics - - Taxation, Subsidies, and Revenue

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:192:y:2020:i:c:s036054421932359x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.