IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v157y2020icp273-289.html
   My bibliography  Save this article

Modeling and energy analysis of a linear concentrating photovoltaic system cooled by two-phase mechanical pumped loop system

Author

Listed:
  • Pabon, Juan J.G.
  • Khosravi, Ali
  • Malekan, M.
  • Sandoval, Oscar R.

Abstract

Generally, the majority of the linear concentrating photovoltaic (LCPV) systems incorporated with active cooling systems use liquid water pump loop or conventional vapor compression refrigeration system. In this study, a new cooling system, so-called two-phase mechanical pumped loop (TMPL), is proposed to be used with LCPV system. The excess heat from photovoltaic (PV) cell is used to heat up water stored in a tank for residential purposes. The case study is Bogota in Colombia and we develop a dynamic simulation model for the LCPV-TMPL system. The design parameters of the TMPL system are the flow volumetric rate and saturation temperature of the refrigerant as well as the tube length of the condenser. Moreover, low global warming potential (GWP) refrigerants such as R1234yf and R1234ze(E) were evaluated, both showing the same performance compared to R134a. The results showed that the use of TMPL system to eliminate the generated heat of PV cell improves its temperature stability and efficiency. It also shows how the proposed model can be used to design the thermal/photovoltaic system for a local, showing also the expected performance before the system installation. In the case study region, the LCPV-TMPL system, using four PV cells with 5 m × 10 mm, produces power with an average monthly of 2 kW with a peak of 5 kW under average and peak monthly solar radiation of 400 W/m2 and 600 W/m2, respectively. The storage tank can heat up 2.2 m³ water per day from 8 °C to approximately 28 °C, in an average sense. This means that the LCPV-TMPL system could save 9000 kWh and 1900 kWh per year in electricity and thermal energies (water heating). This system can be used locally with low or medium solar radiation and cold weather.

Suggested Citation

  • Pabon, Juan J.G. & Khosravi, Ali & Malekan, M. & Sandoval, Oscar R., 2020. "Modeling and energy analysis of a linear concentrating photovoltaic system cooled by two-phase mechanical pumped loop system," Renewable Energy, Elsevier, vol. 157(C), pages 273-289.
  • Handle: RePEc:eee:renene:v:157:y:2020:i:c:p:273-289
    DOI: 10.1016/j.renene.2020.05.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120307370
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Freier, Daria & Ramirez-Iniguez, Roberto & Jafry, Tahseen & Muhammad-Sukki, Firdaus & Gamio, Carlos, 2018. "A review of optical concentrators for portable solar photovoltaic systems for developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 957-968.
    2. Sichilalu, Sam & Mathaba, Tebello & Xia, Xiaohua, 2017. "Optimal control of a wind–PV-hybrid powered heat pump water heater," Applied Energy, Elsevier, vol. 185(P2), pages 1173-1184.
    3. Rodrigo, P.M. & Valera, A. & Fernández, E.F. & Almonacid, F.M., 2019. "Performance and economic limits of passively cooled hybrid thermoelectric generator-concentrator photovoltaic modules," Applied Energy, Elsevier, vol. 238(C), pages 1150-1162.
    4. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part II – Implemented systems, performance assessment, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1566-1633.
    5. Chemisana, Daniel, 2011. "Building Integrated Concentrating Photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 603-611, January.
    6. Dabwan, Yousef N. & Pei, Gang & Gao, Guangtao & Li, Jing & Feng, Junsheng, 2019. "Performance analysis of integrated linear fresnel reflector with a conventional cooling, heat, and power tri-generation plant," Renewable Energy, Elsevier, vol. 138(C), pages 639-650.
    7. Karimi, Fariborz & Xu, Hongtao & Wang, Zhiyun & Chen, Jian & Yang, Mo, 2017. "Experimental study of a concentrated PV/T system using linear Fresnel lens," Energy, Elsevier, vol. 123(C), pages 402-412.
    8. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I – Fundamentals, design considerations and current technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1500-1565.
    9. Wang, Chi-Chuan, 2013. "An overview for the heat transfer performance of HFO-1234yf," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 444-453.
    10. Sharaf, Omar Z. & Orhan, Mehmet F., 2018. "Comparative thermodynamic analysis of densely-packed concentrated photovoltaic thermal (CPVT) solar collectors in thermally in-series and in-parallel receiver configurations," Renewable Energy, Elsevier, vol. 126(C), pages 296-321.
    11. van Sark, Wilfried G.J.H.M., 2013. "Luminescent solar concentrators – A low cost photovoltaics alternative," Renewable Energy, Elsevier, vol. 49(C), pages 207-210.
    12. Seshie, Yao M. & N’Tsoukpoe, Kokouvi Edem & Neveu, Pierre & Coulibaly, Yézouma & Azoumah, Yao K., 2018. "Small scale concentrating solar plants for rural electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 195-209.
    13. Kerzmann, Tony & Schaefer, Laura, 2012. "System simulation of a linear concentrating photovoltaic system with an active cooling system," Renewable Energy, Elsevier, vol. 41(C), pages 254-261.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Chenyu & Wang, Ning & Xu, Hongtao & Fang, Yuan & Yang, Qiguo & Talkhoncheh, Fariborz Karimi, 2023. "Thermal management optimization of the photovoltaic cell by the phase change material combined with metal fins," Energy, Elsevier, vol. 263(PA).
    2. Zhu, Yizhou & Ma, Benchi & Zeng, Zilong & Lou, Hewei & He, Yi & Jing, Dengwei, 2022. "Solar collector tube as secondary concentrator for significantly enhanced optical performance of LCPV/T system," Renewable Energy, Elsevier, vol. 193(C), pages 418-433.
    3. Li, Guanru & Hua, Qingsong & Sun, Li & Khosravi, Ali & Jose Garcia Pabon, Juan, 2023. "Thermodynamic modeling and optimization of hybrid linear concentrating photovoltaic and mechanically pumped two-phase loop system," Applied Energy, Elsevier, vol. 333(C).
    4. Zhou, Ran & Wang, Ruilin & Xing, Chenjian & Sun, Jian & Guo, Yafei & Li, Weiling & Qu, Wanjun & Hong, Hui & Zhao, Chuanwen, 2022. "Design and analysis of a compact solar concentrator tracking via the refraction of the rotating prism," Energy, Elsevier, vol. 251(C).
    5. Lv, Yaya & Han, Xinyue & Chen, Xu & Yao, Yiping, 2023. "Maximizing energy output of a vapor chamber-based high concentrated PV-thermoelectric generator hybrid system," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alzahrani, Mussad & Shanks, Katie & Mallick, Tapas K., 2021. "Advances and limitations of increasing solar irradiance for concentrating photovoltaics thermal system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Lamnatou, Chr. & Vaillon, R. & Parola, S. & Chemisana, D., 2021. "Photovoltaic/thermal systems based on concentrating and non-concentrating technologies: Working fluids at low, medium and high temperatures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Kasaeian, Alibakhsh & Tabasi, Sanaz & Ghaderian, Javad & Yousefi, Hossein, 2018. "A review on parabolic trough/Fresnel based photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 193-204.
    4. Xuan, Qingdong & Li, Guiqiang & Yang, Honglun & Gao, Cai & Jiang, Bin & Liu, Xiangnong & Ji, Jie & Zhao, Xudong & Pei, Gang, 2021. "Performance evaluation for the dielectric asymmetric compound parabolic concentrator with almost unity angular acceptance efficiency," Energy, Elsevier, vol. 233(C).
    5. Faisal Masood & Nursyarizal Bin Mohd Nor & Perumal Nallagownden & Irraivan Elamvazuthi & Rahman Saidur & Mohammad Azad Alam & Javed Akhter & Mohammad Yusuf & Mubbashar Mehmood & Mujahid Ali, 2022. "A Review of Recent Developments and Applications of Compound Parabolic Concentrator-Based Hybrid Solar Photovoltaic/Thermal Collectors," Sustainability, MDPI, vol. 14(9), pages 1-30, May.
    6. Lamnatou, Chr. & Chemisana, D., 2017. "Concentrating solar systems: Life Cycle Assessment (LCA) and environmental issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 916-932.
    7. Daneshazarian, Reza & Cuce, Erdem & Cuce, Pinar Mert & Sher, Farooq, 2018. "Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 473-492.
    8. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Lamnatou, Chr. & Chemisana, D., 2017. "Photovoltaic/thermal (PVT) systems: A review with emphasis on environmental issues," Renewable Energy, Elsevier, vol. 105(C), pages 270-287.
    10. Cameron, William James & Reddy, K. Srinivas & Mallick, Tapas Kumar, 2022. "Review of high concentration photovoltaic thermal hybrid systems for highly efficient energy cogeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    11. Santos, Daniel & Azgın, Ahmet & Castro, Jesus & Kizildag, Deniz & Rigola, Joaquim & Tunçel, Bilge & Turan, Raşit & Preßmair, Rupert & Felsberger, Richard & Buchroithner, Armin, 2023. "Thermal and fluid dynamic optimization of a CPV-T receiver for solar co-generation applications: Numerical modelling and experimental validation," Renewable Energy, Elsevier, vol. 211(C), pages 87-99.
    12. Ju, Xing & Xu, Chao & Han, Xue & Du, Xiaoze & Wei, Gaosheng & Yang, Yongping, 2017. "A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology," Applied Energy, Elsevier, vol. 187(C), pages 534-563.
    13. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    14. Gilmore, Nicholas & Timchenko, Victoria & Menictas, Chris, 2018. "Microchannel cooling of concentrator photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1041-1059.
    15. Karolina Papis-Frączek & Krzysztof Sornek, 2022. "A Review on Heat Extraction Devices for CPVT Systems with Active Liquid Cooling," Energies, MDPI, vol. 15(17), pages 1-49, August.
    16. Bushra, Nayab & Hartmann, Timo, 2019. "A review of state-of-the-art reflective two-stage solar concentrators: Technology categorization and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    17. Ling, Yunyi & Li, Wenjia & Jin, Jian & Yu, Yuhang & Hao, Yong & Jin, Hongguang, 2020. "A spectral-splitting photovoltaic-thermochemical system for energy storage and solar power generation," Applied Energy, Elsevier, vol. 260(C).
    18. Elsabahy, Mohamed M. & Emam, Mohamed & Sekiguchi, Hidetoshi & Ahmed, Mahmoud, 2024. "Performance mapping of silicon-based solar cell for efficient power generation and thermal utilization: Effect of cell encapsulation, temperature coefficient, and reference efficiency," Applied Energy, Elsevier, vol. 356(C).
    19. Valizadeh, Mohammad & Sarhaddi, Faramarz & Mahdavi Adeli, Mohsen, 2019. "Exergy performance assessment of a linear parabolic trough photovoltaic thermal collector," Renewable Energy, Elsevier, vol. 138(C), pages 1028-1041.
    20. Wang, Gang & Yao, Yubo & Lin, Jianqing & Chen, Zeshao & Hu, Peng, 2020. "Design and thermodynamic analysis of a novel solar CPV and thermal combined system utilizing spectral beam splitter," Renewable Energy, Elsevier, vol. 155(C), pages 1091-1102.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:157:y:2020:i:c:p:273-289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.