IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v333y2023ics0306261922018049.html
   My bibliography  Save this article

Thermodynamic modeling and optimization of hybrid linear concentrating photovoltaic and mechanically pumped two-phase loop system

Author

Listed:
  • Li, Guanru
  • Hua, Qingsong
  • Sun, Li
  • Khosravi, Ali
  • Jose Garcia Pabon, Juan

Abstract

Linear concentrating photovoltaic (LCPV) is a promising technology to increase the power density of the solar power generation system. However, the efficiency of LCPV is highly undermined due to inefficient thermal management. Active cooling-based thermal management via a mechanically pumped two-phase loop (MPTL) system can facilitate the heat transfer across LCPV. However, efficient thermal management and waste heat utilization are still challenges due to high heat flux, complex two-phase dynamics, strong internal couplings and dynamic external environment. To simultaneously address these crucial parameters, this paper presents a mathematical model for the hybrid LCPV-MPTL system, including two-phase flow and other auxiliary components. An iterative solution algorithm is proposed to derive the steady-state values under different conditions. Simulations under four operating conditions have been performed based on the developed model, indicating the effects of each parameter. A multi-parameter optimization problem with several constraints is formulated by taking the changing solar irradiation intensity and other environmental factors into account, maximizing the net output of electrical energy while satisfying the safety and operational requirements. Finally, exergy analysis is carried out, showing that the hybridization of MPTL with LCPV can improve its overall exergy efficiency by 6.9%, resulting in high performance PV with greatly controlled cell temperature. In all, the scientifically viable thermal management solution and the underlying design guidelines can be inferred for industrial applications.

Suggested Citation

  • Li, Guanru & Hua, Qingsong & Sun, Li & Khosravi, Ali & Jose Garcia Pabon, Juan, 2023. "Thermodynamic modeling and optimization of hybrid linear concentrating photovoltaic and mechanically pumped two-phase loop system," Applied Energy, Elsevier, vol. 333(C).
  • Handle: RePEc:eee:appene:v:333:y:2023:i:c:s0306261922018049
    DOI: 10.1016/j.apenergy.2022.120547
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922018049
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120547?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Afzali Gorouh, Hossein & Salmanzadeh, Mazyar & Nasseriyan, Pouriya & Hayati, Abolfazl & Cabral, Diogo & Gomes, João & Karlsson, Björn, 2022. "Thermal modelling and experimental evaluation of a novel concentrating photovoltaic thermal collector (CPVT) with parabolic concentrator," Renewable Energy, Elsevier, vol. 181(C), pages 535-553.
    2. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "Optimal design method for concentrating photovoltaic-thermoelectric hybrid system," Applied Energy, Elsevier, vol. 226(C), pages 320-329.
    3. Sun, Yong & Wang, Yiping & Zhu, Li & Yin, Baoquan & Xiang, Haijun & Huang, Qunwu, 2014. "Direct liquid-immersion cooling of concentrator silicon solar cells in a linear concentrating photovoltaic receiver," Energy, Elsevier, vol. 65(C), pages 264-271.
    4. Badr, Farouk & Radwan, Ali & Ahmed, Mahmoud & Hamed, Ahmed M., 2022. "An experimental study of the concentrator photovoltaic/thermoelectric generator performance using different passive cooling methods," Renewable Energy, Elsevier, vol. 185(C), pages 1078-1094.
    5. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng, 2022. "Comparative study on dual-source direct-expansion heat pumps based on different composite concentrating photovoltaic/fin evaporators," Applied Energy, Elsevier, vol. 306(PB).
    6. Gulfam, Raza & Zhang, Peng & Meng, Zhaonan, 2019. "Advanced thermal systems driven by paraffin-based phase change materials – A review," Applied Energy, Elsevier, vol. 238(C), pages 582-611.
    7. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "A novel optimal design method for concentration spectrum splitting photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 163(C), pages 519-532.
    8. Liang, Shen & Zheng, Hongfei & Liu, Shuli & Ma, Xinglong, 2022. "Optical design and validation of a solar concentrating photovoltaic-thermal (CPV-T) module for building louvers," Energy, Elsevier, vol. 239(PC).
    9. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    10. Kerzmann, Tony & Schaefer, Laura, 2012. "System simulation of a linear concentrating photovoltaic system with an active cooling system," Renewable Energy, Elsevier, vol. 41(C), pages 254-261.
    11. Bahaidarah, H. & Subhan, Abdul & Gandhidasan, P. & Rehman, S., 2013. "Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions," Energy, Elsevier, vol. 59(C), pages 445-453.
    12. Qu, Wanjun & Xing, Xueli & Cao, Yali & Liu, Taixiu & Hong, Hui & Jin, Hongguang, 2020. "A concentrating solar power system integrated photovoltaic and mid-temperature solar thermochemical processes," Applied Energy, Elsevier, vol. 262(C).
    13. Pabon, Juan J.G. & Khosravi, Ali & Malekan, M. & Sandoval, Oscar R., 2020. "Modeling and energy analysis of a linear concentrating photovoltaic system cooled by two-phase mechanical pumped loop system," Renewable Energy, Elsevier, vol. 157(C), pages 273-289.
    14. Tsay, Y.L. & Cheng, J.C. & Hong, H.F. & Shih, Z.H., 2011. "Characteristics of heat dissipation from photovoltaic cells on the bottom wall of a horizontal cabinet to ambient natural convective air stream," Energy, Elsevier, vol. 36(7), pages 3959-3967.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elsabahy, Mohamed M. & Emam, Mohamed & Sekiguchi, Hidetoshi & Ahmed, Mahmoud, 2024. "Performance mapping of silicon-based solar cell for efficient power generation and thermal utilization: Effect of cell encapsulation, temperature coefficient, and reference efficiency," Applied Energy, Elsevier, vol. 356(C).
    2. Hamada, Alaa & Emam, Mohamed & Refaey, H.A. & Moawed, M. & Abdelrahman, M.A., 2023. "Investigating the performance of a water-based PVT system using encapsulated PCM balls: An experimental study," Energy, Elsevier, vol. 284(C).
    3. Muhammad Asim & Muhammad Hanzla Tahir & Ammara Kanwal & Fahid Riaz & Muhammad Amjad & Aamna Khalid & Muhammad Mujtaba Abbas & Ashfaq Ahmad & Mohammad Abul Kalam, 2023. "Effects of Varying Volume Fractions of SiO 2 and Al 2 O 3 on the Performance of Concentrated Photovoltaic System," Sustainability, MDPI, vol. 15(10), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorenzi, Bruno & Mariani, Paolo & Reale, Andrea & Di Carlo, Aldo & Chen, Gang & Narducci, Dario, 2021. "Practical development of efficient thermoelectric – Photovoltaic hybrid systems based on wide-gap solar cells," Applied Energy, Elsevier, vol. 300(C).
    2. He, Y. & Tao, Y.B. & Ye, H., 2023. "Periodic energy transmission and regulation of photovoltaic-phase change material-thermoelectric coupled system under space conditions," Energy, Elsevier, vol. 263(PC).
    3. Liang, Tao & Fu, Tong & Hu, Cong & Chen, Xiaohang & Su, Shanhe & Chen, Jincan, 2021. "Optimum matching of photovoltaic–thermophotovoltaic cells efficiently utilizing full-spectrum solar energy," Renewable Energy, Elsevier, vol. 173(C), pages 942-952.
    4. Karolina Papis-Frączek & Krzysztof Sornek, 2022. "A Review on Heat Extraction Devices for CPVT Systems with Active Liquid Cooling," Energies, MDPI, vol. 15(17), pages 1-49, August.
    5. Zhang, Jin & Xuan, Yimin, 2019. "The electric feature synergy in the photovoltaic - Thermoelectric hybrid system," Energy, Elsevier, vol. 181(C), pages 387-394.
    6. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Li, Jinyu & Yang, Zhengda & Ge, Yi & Wang, Yiya & Dong, Qiwei & Wang, Xinwei & Lin, Riyi, 2024. "Performance study of photovoltaic-thermochemical hybrid system with Cassegrain concentrator and spectral splitting integration," Energy, Elsevier, vol. 292(C).
    8. Li, Jinyu & Yang, Zhengda & Wang, Yiya & Dong, Qiwei & Qi, Shitao & Huang, Chenxing & Wang, Xinwei & Lin, Riyi, 2023. "A novel non-confocal two-stage dish concentrating photovoltaic/thermal hybrid system utilizing spectral beam splitting technology: Optical and thermal performance investigations," Renewable Energy, Elsevier, vol. 206(C), pages 609-622.
    9. Sun, Yong & Wang, Yiping & Zhu, Li & Yin, Baoquan & Xiang, Haijun & Huang, Qunwu, 2014. "Direct liquid-immersion cooling of concentrator silicon solar cells in a linear concentrating photovoltaic receiver," Energy, Elsevier, vol. 65(C), pages 264-271.
    10. Cui, Y.J. & Wang, B.L. & Wang, K.F. & Wang, G.G. & Zhang, A.B., 2022. "An analytical model to evaluate the fatigue crack effects on the hybrid photovoltaic-thermoelectric device," Renewable Energy, Elsevier, vol. 182(C), pages 923-933.
    11. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2019. "Feasibility analysis of a concentrating photovoltaic-thermoelectric-thermal cogeneration," Applied Energy, Elsevier, vol. 236(C), pages 560-573.
    12. Ge, Minghui & Zhao, Yuntong & Li, Yanzhe & He, Wei & Xie, Liyao & Zhao, Yulong, 2022. "Structural optimization of thermoelectric modules in a concentration photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 244(PB).
    13. Cai, Yang & Wang, Wei-Wei & Liu, Cheng-Wei & Ding, Wen-Tao & Liu, Di & Zhao, Fu-Yun, 2020. "Performance evaluation of a thermoelectric ventilation system driven by the concentrated photovoltaic thermoelectric generators for green building operations," Renewable Energy, Elsevier, vol. 147(P1), pages 1565-1583.
    14. Sato, Daisuke & Yamada, Noboru, 2019. "Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 151-166.
    15. Liu, Junwei & Tang, Huajie & Zhang, Debao & Jiao, Shifei & Zhou, Zhihua & Zhang, Zhuofen & Ling, Jihong & Zuo, Jian, 2020. "Performance evaluation of the hybrid photovoltaic-thermoelectric system with light and heat management," Energy, Elsevier, vol. 211(C).
    16. Kwan, Trevor Hocksun & Yao, Qinghe, 2019. "Preliminary study of integrating the vapor compression cycle with concentrated photovoltaic panels for supporting hydrogen production," Renewable Energy, Elsevier, vol. 134(C), pages 828-836.
    17. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2020. "Feasibility analysis of a tandem photovoltaic-thermoelectric hybrid system under solar concentration," Renewable Energy, Elsevier, vol. 162(C), pages 1828-1841.
    18. Wu, Haojin & Zhou, Zhijun & Shan, Shiquan, 2022. "Optimal design principle of a cascading solar photovoltaic system with concentrating spectrum splitting and reshaping," Renewable Energy, Elsevier, vol. 197(C), pages 197-210.
    19. Petru Adrian Cotfas & Daniel Tudor Cotfas, 2020. "Comprehensive Review of Methods and Instruments for Photovoltaic–Thermoelectric Generator Hybrid System Characterization," Energies, MDPI, vol. 13(22), pages 1-32, November.
    20. Li, Guiqiang & Shittu, Samson & Ma, Xiaoli & Zhao, Xudong, 2019. "Comparative analysis of thermoelectric elements optimum geometry between photovoltaic-thermoelectric and solar thermoelectric," Energy, Elsevier, vol. 171(C), pages 599-610.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:333:y:2023:i:c:s0306261922018049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.