IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v82y2015icp44-53.html
   My bibliography  Save this article

High voltage step-up integrated double Boost–Sepic DC–DC converter for fuel-cell and photovoltaic applications

Author

Listed:
  • Sabzali, Ahmad J.
  • Ismail, Esam H.
  • Behbehani, Hussain M.

Abstract

In this paper, an integrated double boost SEPIC (IDBS) converter is proposed as a high step-up converter. The proposed converter utilizes a single controlled power switch and two inductors and is able to provide high voltage gain without extreme switch duty-cycle. The two inductors can be coupled into one core for reducing the input current ripple without affecting the basic DC characteristic of the converter. Moreover, the voltage stresses across all the semiconductors are less than half of the output voltage. The reduced voltage stress across the power switch enables the use of a lower voltage and RDS-ON MOSFET switch, which will further reduce the conduction losses. Whereas, the low voltage stress across the diodes allows the use of Schottky rectifiers for alleviating the reverse-recovery current problem, leading to a further reduction in the switching and conduction losses. A detailed circuit analysis is performed to derive the design equations. A design example for a 100-W/240 Vdc with 24 Vdc input voltage is provided. The feasibility of the converter is confirmed with results obtained from simulation and an experimental prototype.

Suggested Citation

  • Sabzali, Ahmad J. & Ismail, Esam H. & Behbehani, Hussain M., 2015. "High voltage step-up integrated double Boost–Sepic DC–DC converter for fuel-cell and photovoltaic applications," Renewable Energy, Elsevier, vol. 82(C), pages 44-53.
  • Handle: RePEc:eee:renene:v:82:y:2015:i:c:p:44-53
    DOI: 10.1016/j.renene.2014.08.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114004935
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.08.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Shuhui & Haskew, Timothy A. & Li, Dawen & Hu, Fei, 2011. "Integrating photovoltaic and power converter characteristics for energy extraction study of solar PV systems," Renewable Energy, Elsevier, vol. 36(12), pages 3238-3245.
    2. Kesraoui, M. & Korichi, N. & Belkadi, A., 2011. "Maximum power point tracker of wind energy conversion system," Renewable Energy, Elsevier, vol. 36(10), pages 2655-2662.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cho, Younghoon, 2017. "Dual-buck residential photovoltaic inverter with a high-accuracy repetitive current controller," Renewable Energy, Elsevier, vol. 101(C), pages 168-181.
    2. Ramli, Mohd Zulkifli & Salam, Zainal, 2019. "Performance evaluation of dc power optimizer (DCPO) for photovoltaic (PV) system during partial shading," Renewable Energy, Elsevier, vol. 139(C), pages 1336-1354.
    3. Chih-Lung Shen & Po-Chieh Chiu & Yan-Chi Lee, 2016. "Novel Interleaved Converter with Extra-High Voltage Gain to Process Low-Voltage Renewable-Energy Generation," Energies, MDPI, vol. 9(11), pages 1-12, October.
    4. Goudarzian, Alireza & Khosravi, Adel & Raeisi, Heidar Ali, 2020. "Analysis of a step-up dc/dc converter with capability of right-half plane zero cancellation," Renewable Energy, Elsevier, vol. 157(C), pages 1156-1170.
    5. Venkateswari, R. & Sreejith, S., 2019. "Factors influencing the efficiency of photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 376-394.
    6. García-Triviño, Pablo & Torreglosa, Juan P. & Fernández-Ramírez, Luis M. & Jurado, Francisco, 2016. "Control and operation of power sources in a medium-voltage direct-current microgrid for an electric vehicle fast charging station with a photovoltaic and a battery energy storage system," Energy, Elsevier, vol. 115(P1), pages 38-48.
    7. Mahajan Sagar Bhaskar & Sanjeevikumar Padmanaban & Frede Blaabjerg, 2017. "A Multistage DC-DC Step-Up Self-Balanced and Magnetic Component-Free Converter for Photovoltaic Applications: Hardware Implementation," Energies, MDPI, vol. 10(5), pages 1-28, May.
    8. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Saffar, Mustafa A. & Ismail, Esam H., 2015. "A high voltage ratio and low stress DC–DC converter with reduced input current ripple for fuel cell source," Renewable Energy, Elsevier, vol. 82(C), pages 35-43.
    2. García-Triviño, Pablo & Torreglosa, Juan P. & Fernández-Ramírez, Luis M. & Jurado, Francisco, 2016. "Control and operation of power sources in a medium-voltage direct-current microgrid for an electric vehicle fast charging station with a photovoltaic and a battery energy storage system," Energy, Elsevier, vol. 115(P1), pages 38-48.
    3. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    4. Amir Raouf & Kotb B. Tawfiq & Elsayed Tag Eldin & Hossam Youssef & Elwy E. El-Kholy, 2023. "Wind Energy Conversion Systems Based on a Synchronous Generator: Comparative Review of Control Methods and Performance," Energies, MDPI, vol. 16(5), pages 1-22, February.
    5. Ehsanul Kabir & Ki-Hyun Kim & Jan E. Szulejko, 2017. "Social Impacts of Solar Home Systems in Rural Areas: A Case Study in Bangladesh," Energies, MDPI, vol. 10(10), pages 1-12, October.
    6. Karabacak, Murat, 2019. "A new perturb and observe based higher order sliding mode MPPT control of wind turbines eliminating the rotor inertial effect," Renewable Energy, Elsevier, vol. 133(C), pages 807-827.
    7. Koohi-Kamalі, Sam & Rahim, N.A. & Mokhlis, H. & Tyagi, V.V., 2016. "Photovoltaic electricity generator dynamic modeling methods for smart grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 131-172.
    8. Zheng, Huiying & Li, Shuhui & Challoo, Rajab & Proano, Julio, 2014. "Shading and bypass diode impacts to energy extraction of PV arrays under different converter configurations," Renewable Energy, Elsevier, vol. 68(C), pages 58-66.
    9. Li, Le & Zhu, Donghai & Zou, Xudong & Hu, Jiabing & Kang, Yong & Guerrero, Josep M., 2023. "Review of frequency regulation requirements for wind power plants in international grid codes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    10. Al-Saffar, Mustafa A. & Ismail, Esam H. & Sabzali, Ahmad J., 2013. "Family of ZC-ZVS converters with wide voltage range for renewable energy systems," Renewable Energy, Elsevier, vol. 56(C), pages 32-43.
    11. Kuperman, Alon & Averbukh, Moshe & Lineykin, Simon, 2013. "Maximum power point matching versus maximum power point tracking for solar generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 11-17.
    12. Radičević, Branko M. & Savić, Milan S. & Madsen, Søren Find & Badea, Ion, 2012. "Impact of wind turbine blade rotation on the lightning strike incidence – A theoretical and experimental study using a reduced-size model," Energy, Elsevier, vol. 45(1), pages 644-654.
    13. Atlaschian, Omid & Metzger, M., 2021. "Numerical model of vertical axis wind turbine performance in realistic gusty wind conditions," Renewable Energy, Elsevier, vol. 165(P1), pages 211-223.
    14. Abdelhak Dida & Djilani Ben Attous, 2017. "Adaptive hill-climb searching method for MPPT algorithm based DFIG system using fuzzy logic controller," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 424-434, January.
    15. Ram, J.Prasanth & Rajasekar, N. & Miyatake, Masafumi, 2017. "Design and overview of maximum power point tracking techniques in wind and solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1138-1159.
    16. Sri Revathi, B. & Prabhakar, M., 2016. "Non isolated high gain DC-DC converter topologies for PV applications – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 920-933.
    17. Ganjefar, Soheil & Ghasemi, Ali Akbar, 2014. "A novel-strategy controller design for maximum power extraction in stand-alone windmill systems," Energy, Elsevier, vol. 76(C), pages 326-335.
    18. Arroyo, A. & Manana, M. & Gomez, C. & Fernandez, I. & Delgado, F. & Zobaa, Ahmed F., 2013. "A methodology for the low-cost optimisation of small wind turbine performance," Applied Energy, Elsevier, vol. 104(C), pages 1-9.
    19. Bouzelata, Yahia & Kurt, Erol & Altın, Necmi & Chenni, Rachid, 2015. "Design and simulation of a solar supplied multifunctional active power filter and a comparative study on the current-detection algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1114-1126.
    20. Wei-Man Yang & Xing-Gui Wang & Xiao-Ying Li & Zheng-Ying Liu, 2014. "An Active Power Sharing Method among Distributed Energy Sources in an Islanded Series Micro-Grid," Energies, MDPI, vol. 7(12), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:82:y:2015:i:c:p:44-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.