IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v157y2020icp1102-1115.html
   My bibliography  Save this article

Identifying a suitable hourly solar diffuse fraction model to generate the typical meteorological year for building energy simulation application

Author

Listed:
  • Huang, Kuo-Tsang

Abstract

As cooling and heating energy consumptions of buildings are closely related to outdoor climate variations, the reliability of building energy simulation results is significantly influenced by the accuracy of weather data being used. We intend to construct a new typical meteorological year (TMY) for Taipei. As no beam or diffuse solar irradiance data have been recorded at local weather stations, a preliminary study on the influences of currently available hourly solar diffuse fraction models (DFMs) to the building cooling loads was performed. A 2.30%–5.18% range of annual cooling load variation was observed, which drove a need for searching suitable DFMs. To this end, the observed diffuse irradiance data of an in-situ experiment was compared to the DFM modeled values to identify the suitable DFM. It was found that Kuo’s model, which has its coefficient been adapted to the local weather and further uses solar altitude, the daily clearness index as predicting variables, performed best and was used herein. The representativeness against the long-term climate of the three antiquated TMYs and the new one was discussed with a simulation-based comparison from 12 existing buildings. The reliability and accuracy of the new TMY in representing the local climate conditions are much improved.

Suggested Citation

  • Huang, Kuo-Tsang, 2020. "Identifying a suitable hourly solar diffuse fraction model to generate the typical meteorological year for building energy simulation application," Renewable Energy, Elsevier, vol. 157(C), pages 1102-1115.
  • Handle: RePEc:eee:renene:v:157:y:2020:i:c:p:1102-1115
    DOI: 10.1016/j.renene.2020.05.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120307928
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalogirou, Soteris A., 2003. "Generation of typical meteorological year (TMY-2) for Nicosia, Cyprus," Renewable Energy, Elsevier, vol. 28(15), pages 2317-2334.
    2. Lee, Kwanho & Yoo, Hochun & Levermore, Geoff J., 2013. "Quality control and estimation hourly solar irradiation on inclined surfaces in South Korea," Renewable Energy, Elsevier, vol. 57(C), pages 190-199.
    3. Pusat, Saban & Ekmekçi, İsmail & Akkoyunlu, Mustafa Tahir, 2015. "Generation of typical meteorological year for different climates of Turkey," Renewable Energy, Elsevier, vol. 75(C), pages 144-151.
    4. Soares, Jacyra & Oliveira, Amauri P. & Boznar, Marija Zlata & Mlakar, Primoz & Escobedo, João F. & Machado, Antonio J., 2004. "Modeling hourly diffuse solar-radiation in the city of São Paulo using a neural-network technique," Applied Energy, Elsevier, vol. 79(2), pages 201-214, October.
    5. Jacovides, C.P. & Tymvios, F.S. & Assimakopoulos, V.D. & Kaltsounides, N.A., 2006. "Comparative study of various correlations in estimating hourly diffuse fraction of global solar radiation," Renewable Energy, Elsevier, vol. 31(15), pages 2492-2504.
    6. Gueymard, Christian A., 2014. "A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1024-1034.
    7. Said, S.A.M. & Kadry, H.M., 1994. "Generation of representative weather--Year data for Saudi Arabia," Applied Energy, Elsevier, vol. 48(2), pages 131-136.
    8. Jiang, Yingni, 2010. "Generation of typical meteorological year for different climates of China," Energy, Elsevier, vol. 35(5), pages 1946-1953.
    9. Zang, Haixiang & Xu, Qingshan & Bian, Haihong, 2012. "Generation of typical solar radiation data for different climates of China," Energy, Elsevier, vol. 38(1), pages 236-248.
    10. Ohunakin, Olayinka S. & Adaramola, Muyiwa S. & Oyewola, Olanrewaju M. & Fagbenle, Richard O., 2013. "Generation of a typical meteorological year for north–east, Nigeria," Applied Energy, Elsevier, vol. 112(C), pages 152-159.
    11. Mosalam Shaltout, M.A. & Tadros, M.T.Y., 1994. "Typical solar radiation year for Egypt," Renewable Energy, Elsevier, vol. 4(4), pages 387-393.
    12. Kuo, Chia-Wei & Chang, Wen-Chey & Chang, Keh-Chin, 2014. "Modeling the hourly solar diffuse fraction in Taiwan," Renewable Energy, Elsevier, vol. 66(C), pages 56-61.
    13. Boland, John & Ridley, Barbara & Brown, Bruce, 2008. "Models of diffuse solar radiation," Renewable Energy, Elsevier, vol. 33(4), pages 575-584.
    14. Ridley, Barbara & Boland, John & Lauret, Philippe, 2010. "Modelling of diffuse solar fraction with multiple predictors," Renewable Energy, Elsevier, vol. 35(2), pages 478-483.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Kaili & Zhang, Xiaojing & Xie, Jingchao & Hao, Ziyang & Xiao, Guofeng & Liu, Jiaping, 2023. "Modeling hourly solar diffuse fraction on a horizontal surface based on sky conditions clustering," Energy, Elsevier, vol. 272(C).
    2. De Masi, Rosa Francesca & Gigante, Antonio & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2021. "Impact of weather data and climate change projections in the refurbishment design of residential buildings in cooling dominated climate," Applied Energy, Elsevier, vol. 303(C).
    3. Lin, Chun-Tin & Chang, Keh-Chin & Chung, Kung-Ming, 2023. "Re-modeling the solar diffuse fraction in Taiwan on basis of a typical-meteorological-year data," Renewable Energy, Elsevier, vol. 204(C), pages 823-835.
    4. Zhang, Chunxiao & Shen, Chao & Zhang, Yingbo & Sun, Cheng & Chwieduk, Dorota & Kalogirou, Soteris A., 2021. "Optimization of the electricity/heat production of a PV/T system based on spectral splitting with Ag nanofluid," Renewable Energy, Elsevier, vol. 180(C), pages 30-39.
    5. Han, Jen-Yu & Vohnicky, Petr, 2022. "An optimized approach for mapping solar irradiance in a mid-low latitude region based on a site-adaptation technique using Himawari-8 satellite imageries," Renewable Energy, Elsevier, vol. 187(C), pages 603-617.
    6. Nunez Munoz, Maria & Ballantyne, Erica E.F. & Stone, David A., 2022. "Development and evaluation of empirical models for the estimation of hourly horizontal diffuse solar irradiance in the United Kingdom," Energy, Elsevier, vol. 241(C).
    7. Putra, I Dewa Gede Arya & Nimiya, Hideyo & Sopaheluwakan, Ardhasena & Kubota, Tetsu & Lee, Han Soo & Pradana, Radyan Putra & Alfata, Muhammad Nur Fajri & Perdana, Reza Bayu & Permana, Donaldi Sukma & , 2024. "Development of typical meteorological years based on quality control of datasets in Indonesia," Renewable Energy, Elsevier, vol. 221(C).
    8. Hassan, Muhammed A. & Akoush, Bassem M. & Abubakr, Mohamed & Campana, Pietro Elia & Khalil, Adel, 2021. "High-resolution estimates of diffuse fraction based on dynamic definitions of sky conditions," Renewable Energy, Elsevier, vol. 169(C), pages 641-659.
    9. Jahns, Christopher & Osinski, Paul & Weber, Christoph, 2023. "A statistical approach to modeling the variability between years in renewable infeed on energy system level," Energy, Elsevier, vol. 263(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haixiang Zang & Miaomiao Wang & Jing Huang & Zhinong Wei & Guoqiang Sun, 2016. "A Hybrid Method for Generation of Typical Meteorological Years for Different Climates of China," Energies, MDPI, vol. 9(12), pages 1-19, December.
    2. Seyed Abbas Mousavi Maleki & H. Hizam & Chandima Gomes, 2017. "Estimation of Hourly, Daily and Monthly Global Solar Radiation on Inclined Surfaces: Models Re-Visited," Energies, MDPI, vol. 10(1), pages 1-28, January.
    3. Liu, Peirong & Tong, Xiaojuan & Zhang, Jinsong & Meng, Ping & Li, Jun & Zhang, Jingru, 2020. "Estimation of half-hourly diffuse solar radiation over a mixed plantation in north China," Renewable Energy, Elsevier, vol. 149(C), pages 1360-1369.
    4. Abreu, Edgar F.M. & Canhoto, Paulo & Costa, Maria João, 2019. "Prediction of diffuse horizontal irradiance using a new climate zone model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 28-42.
    5. Cui, Ying & Yan, Da & Hong, Tianzhen & Xiao, Chan & Luo, Xuan & Zhang, Qi, 2017. "Comparison of typical year and multiyear building simulations using a 55-year actual weather data set from China," Applied Energy, Elsevier, vol. 195(C), pages 890-904.
    6. Oluwaseu Kilanko & Sunday O Oyedepo & Joseph O Dirisu & Richard O Leramo & Philip Babalola & Abraham K Aworinde & Mfon Udo & Alexander M Okonkwo & Marvelous I Akomolafe, 2023. "Typical meteorological year data analysis for optimal usage of energy systems at six selected locations in Nigeria," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 637-658.
    7. Vincenzo Costanzo & Gianpiero Evola & Marco Infantone & Luigi Marletta, 2020. "Updated Typical Weather Years for the Energy Simulation of Buildings in Mediterranean Climate. A Case Study for Sicily," Energies, MDPI, vol. 13(16), pages 1-24, August.
    8. Li, Honglian & Yang, Yi & Lv, Kailin & Liu, Jing & Yang, Liu, 2020. "Compare several methods of select typical meteorological year for building energy simulation in China," Energy, Elsevier, vol. 209(C).
    9. Kuo, Chia-Wei & Chang, Wen-Chey & Chang, Keh-Chin, 2014. "Modeling the hourly solar diffuse fraction in Taiwan," Renewable Energy, Elsevier, vol. 66(C), pages 56-61.
    10. Lou, Siwei & Li, Danny H.W. & Lam, Joseph C. & Chan, Wilco W.H., 2016. "Prediction of diffuse solar irradiance using machine learning and multivariable regression," Applied Energy, Elsevier, vol. 181(C), pages 367-374.
    11. Pusat, Saban & Ekmekçi, İsmail & Akkoyunlu, Mustafa Tahir, 2015. "Generation of typical meteorological year for different climates of Turkey," Renewable Energy, Elsevier, vol. 75(C), pages 144-151.
    12. Marques Filho, Edson P. & Oliveira, Amauri P. & Vita, Willian A. & Mesquita, Francisco L.L. & Codato, Georgia & Escobedo, João F. & Cassol, Mariana & França, José Ricardo A., 2016. "Global, diffuse and direct solar radiation at the surface in the city of Rio de Janeiro: Observational characterization and empirical modeling," Renewable Energy, Elsevier, vol. 91(C), pages 64-74.
    13. Abreu, Edgar F.M. & Canhoto, Paulo & Prior, Victor & Melicio, R., 2018. "Solar resource assessment through long-term statistical analysis and typical data generation with different time resolutions using GHI measurements," Renewable Energy, Elsevier, vol. 127(C), pages 398-411.
    14. El-Sebaii, A.A. & Al-Hazmi, F.S. & Al-Ghamdi, A.A. & Yaghmour, S.J., 2010. "Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia," Applied Energy, Elsevier, vol. 87(2), pages 568-576, February.
    15. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.
    16. Putra, I Dewa Gede Arya & Nimiya, Hideyo & Sopaheluwakan, Ardhasena & Kubota, Tetsu & Lee, Han Soo & Pradana, Radyan Putra & Alfata, Muhammad Nur Fajri & Perdana, Reza Bayu & Permana, Donaldi Sukma & , 2024. "Development of typical meteorological years based on quality control of datasets in Indonesia," Renewable Energy, Elsevier, vol. 221(C).
    17. Li, Honglian & Huang, Jin & Hu, Yao & Wang, Shangyu & Liu, Jing & Yang, Liu, 2021. "A new TMY generation method based on the entropy-based TOPSIS theory for different climatic zones in China," Energy, Elsevier, vol. 231(C).
    18. Furlan, Claudia & de Oliveira, Amauri Pereira & Soares, Jacyra & Codato, Georgia & Escobedo, João Francisco, 2012. "The role of clouds in improving the regression model for hourly values of diffuse solar radiation," Applied Energy, Elsevier, vol. 92(C), pages 240-254.
    19. Fan, Xinying, 2022. "A method for the generation of typical meteorological year data using ensemble empirical mode decomposition for different climates of China and performance comparison analysis," Energy, Elsevier, vol. 240(C).
    20. Torres, J.L. & De Blas, M. & García, A. & de Francisco, A., 2010. "Comparative study of various models in estimating hourly diffuse solar irradiance," Renewable Energy, Elsevier, vol. 35(6), pages 1325-1332.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:157:y:2020:i:c:p:1102-1115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.