IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v155y2020icp783-799.html
   My bibliography  Save this article

Effect of regeneration heat and energy storage on thermal drying performance in a hardwood solar kiln

Author

Listed:
  • Khouya, Ahmed

Abstract

The use of energy efficiency tools and solar energy in wood drying can help reduce the often heavy energy consumption of industrial dryers. The rational management of energy in terms of drying has attracted a lot of attention and the main objective of this work is to adapt the techniques of renewable energy and energy saving in solar kilns. The present work is therefore a contribution to the improvement of energy efficiency and the modeling of a solar wood kiln with thermal storage and heat regeneration. The drying system consists of five main units, a drying chamber, a multi-pass solar air collector, a cylindrical parabolic solar collector, a thermal storage tank and a Closed Feed Air Heater. The investigation carried out in this work is based on the establishment of mass and energy conservation equations in different components of the drying system. The governing equations of heat and mass transfer are solved using the implicit finite difference method. The discrepancies between the experimental and numerical results do not exceed 5%. The results show that the drying time is shorter in June and longer in December. The drying time decreases as the collector area increases and the boards thickness decreases. By incorporating a Closed Feed Air Heater with an effectiveness of 0.75, in the solar dryer, the collector and drying efficiency values are increased from 0.48 to 0.56 and 0.43 to 0.88, in June, respectively. The integration of the thermal storage unit in the solar kiln has the effect of reducing the drying time up to 40 and 60%, in June and December, respectively. Moreover, the combined use of thermal storage and regeneration heat is efficient in reducing the energy consumption ratio (kWh.m−3) up to 50% and 54%, in June and December, respectively. The proposed solution can significantly improve thermal drying performance and thus overcoming the problem of longer drying time, especially in winter.

Suggested Citation

  • Khouya, Ahmed, 2020. "Effect of regeneration heat and energy storage on thermal drying performance in a hardwood solar kiln," Renewable Energy, Elsevier, vol. 155(C), pages 783-799.
  • Handle: RePEc:eee:renene:v:155:y:2020:i:c:p:783-799
    DOI: 10.1016/j.renene.2020.03.178
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120305115
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.03.178?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramadan, M.R.I. & El-Sebaii, A.A. & Aboul-Enein, S. & El-Bialy, E., 2007. "Thermal performance of a packed bed double-pass solar air heater," Energy, Elsevier, vol. 32(8), pages 1524-1535.
    2. Luna, D. & Nadeau, J.-P. & Jannot, Y., 2009. "Solar timber kilns: State of the art and foreseeable developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1446-1455, August.
    3. Alva, Guruprasad & Liu, Lingkun & Huang, Xiang & Fang, Guiyin, 2017. "Thermal energy storage materials and systems for solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 693-706.
    4. Gao, Wenfeng & Lin, Wenxian & Liu, Tao & Xia, Chaofeng, 2007. "Analytical and experimental studies on the thermal performance of cross-corrugated and flat-plate solar air heaters," Applied Energy, Elsevier, vol. 84(4), pages 425-441, April.
    5. Aboul-Enein, S. & El-Sebaii, A.A. & Ramadan, M.R.I. & El-Gohary, H.G., 2000. "Parametric study of a solar air heater with and without thermal storage for solar drying applications," Renewable Energy, Elsevier, vol. 21(3), pages 505-522.
    6. Khouya, A. & Draoui, A., 2019. "Computational drying model for solar kiln with latent heat energy storage: Case studies of thermal application," Renewable Energy, Elsevier, vol. 130(C), pages 796-813.
    7. Johnsson, Simon & Andersson, Elias & Thollander, Patrik & Karlsson, Magnus, 2019. "Energy savings and greenhouse gas mitigation potential in the Swedish wood industry," Energy, Elsevier, vol. 187(C).
    8. El-Sebaii, A.A. & Aboul-Enein, S. & Ramadan, M.R.I. & Shalaby, S.M. & Moharram, B.M., 2011. "Thermal performance investigation of double pass-finned plate solar air heater," Applied Energy, Elsevier, vol. 88(5), pages 1727-1739, May.
    9. El-Sebaii, A.A. & Aboul-Enein, S. & Ramadan, M.R.I. & Shalaby, S.M. & Moharram, B.M., 2011. "Investigation of thermal performance of-double pass-flat and v-corrugated plate solar air heaters," Energy, Elsevier, vol. 36(2), pages 1076-1086.
    10. Luna, D. & Nadeau, J.-P. & Jannot, Y., 2010. "Model and simulation of a solar kiln with energy storage," Renewable Energy, Elsevier, vol. 35(11), pages 2533-2542.
    11. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    12. Aldabbagh, L.B.Y. & Egelioglu, F. & Ilkan, M., 2010. "Single and double pass solar air heaters with wire mesh as packing bed," Energy, Elsevier, vol. 35(9), pages 3783-3787.
    13. Al-Abidi, Abduljalil A. & Bin Mat, Sohif & Sopian, K. & Sulaiman, M.Y. & Lim, C.H. & Th, Abdulrahman, 2012. "Review of thermal energy storage for air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5802-5819.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khouya, Ahmed, 2021. "Modelling and analysis of a hybrid solar dryer for woody biomass," Energy, Elsevier, vol. 216(C).
    2. Lamrani, Bilal & Kuznik, Frédéric & Ajbar, Abdelhamid & Boumaza, Mourad, 2021. "Energy analysis and economic feasibility of wood dryers integrated with heat recovery unit and solar air heaters in cold and hot climates," Energy, Elsevier, vol. 228(C).
    3. Khouya, Ahmed, 2022. "Performance analysis and optimization of a trilateral organic Rankine powered by a concentrated photovoltaic thermal system," Energy, Elsevier, vol. 247(C).
    4. Chtioui, Salwa & Khouya, Ahmed, 2024. "Optimizing solar energy for wood drying under various climates: A comparative study of flat plate and photovoltaic thermal solar collectors," Renewable Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
    2. Alam, Tabish & Kim, Man-Hoe, 2017. "Performance improvement of double-pass solar air heater – A state of art of review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 779-793.
    3. Singh, Satyender & Dhiman, Prashant, 2016. "Thermal performance of double pass packed bed solar air heaters – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1010-1031.
    4. Yu Wang & Mikael Boulic & Robyn Phipps & Manfred Plagmann & Chris Cunningham, 2020. "Experimental Performance of a Solar Air Collector with a Perforated Back Plate in New Zealand," Energies, MDPI, vol. 13(6), pages 1-16, March.
    5. Saxena, Abhishek & Varun, & El-Sebaii, A.A., 2015. "A thermodynamic review of solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 863-890.
    6. Dhiman, Prashant & Thakur, N.S. & Chauhan, S.R., 2012. "Thermal and thermohydraulic performance of counter and parallel flow packed bed solar air heaters," Renewable Energy, Elsevier, vol. 46(C), pages 259-268.
    7. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    8. Hassan, Hamdy & Abo-Elfadl, Saleh & El-Dosoky, M.F., 2020. "An experimental investigation of the performance of new design of solar air heater (tubular)," Renewable Energy, Elsevier, vol. 151(C), pages 1055-1066.
    9. Yang, Tingting & Athienitis, Andreas K., 2015. "Experimental investigation of a two-inlet air-based building integrated photovoltaic/thermal (BIPV/T) system," Applied Energy, Elsevier, vol. 159(C), pages 70-79.
    10. Bekkioui, Naoual & El hakiki, Sarra & Rachadi, Abdeljalil & Ez-Zahraouy, Hamid, 2020. "One-year simulation of a solar wood dryer with glazed walls in a Moroccan climate," Renewable Energy, Elsevier, vol. 155(C), pages 770-782.
    11. Ravi, Ravi Kant & Saini, Rajeshwer Prasad, 2016. "A review on different techniques used for performance enhancement of double pass solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 941-952.
    12. Razak, A.A. & Majid, Z.A.A. & Azmi, W.H. & Ruslan, M.H. & Choobchian, Sh. & Najafi, G. & Sopian, K., 2016. "Review on matrix thermal absorber designs for solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 682-693.
    13. Singh, Satyender & Chaurasiya, Shailendra Kumar & Negi, Bharat Singh & Chander, Subhash & Nemś, Magdalena & Negi, Sushant, 2020. "Utilizing circular jet impingement to enhance thermal performance of solar air heater," Renewable Energy, Elsevier, vol. 154(C), pages 1327-1345.
    14. Kabeel, A.E. & Hamed, Mofreh H. & Omara, Z.M. & Kandeal, A.W., 2017. "Solar air heaters: Design configurations, improvement methods and applications – A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1189-1206.
    15. Lamrani, Bilal & Kuznik, Frédéric & Ajbar, Abdelhamid & Boumaza, Mourad, 2021. "Energy analysis and economic feasibility of wood dryers integrated with heat recovery unit and solar air heaters in cold and hot climates," Energy, Elsevier, vol. 228(C).
    16. Nowzari, Raheleh & Aldabbagh, L.B.Y. & Egelioglu, F., 2014. "Single and double pass solar air heaters with partially perforated cover and packed mesh," Energy, Elsevier, vol. 73(C), pages 694-702.
    17. Rajaseenivasan, T. & Srinivasan, S. & Srithar, K., 2015. "Comprehensive study on solar air heater with circular and V-type turbulators attached on absorber plate," Energy, Elsevier, vol. 88(C), pages 863-873.
    18. Khouya, A. & Draoui, A., 2019. "Computational drying model for solar kiln with latent heat energy storage: Case studies of thermal application," Renewable Energy, Elsevier, vol. 130(C), pages 796-813.
    19. Hu, Nan & Li, Zi-Rui & Xu, Zhe-Wen & Fan, Li-Wu, 2022. "Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    20. Roozbeh Vaziri & Akeem Adeyemi Oladipo & Mohsen Sharifpur & Rani Taher & Mohammad Hossein Ahmadi & Alibek Issakhov, 2021. "Efficiency Enhancement in Double-Pass Perforated Glazed Solar Air Heaters with Porous Beds: Taguchi-Artificial Neural Network Optimization and Cost–Benefit Analysis," Sustainability, MDPI, vol. 13(21), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:155:y:2020:i:c:p:783-799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.