IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v155y2020icp770-782.html
   My bibliography  Save this article

One-year simulation of a solar wood dryer with glazed walls in a Moroccan climate

Author

Listed:
  • Bekkioui, Naoual
  • El hakiki, Sarra
  • Rachadi, Abdeljalil
  • Ez-Zahraouy, Hamid

Abstract

A one-year numerical simulation of a solar wood dryer with glazed walls in a Moroccan climate was developed. This simulation was used to predict detailed and temporal distributions of wood moisture content (MC) and to study the mechanisms and parameters involved in solar wood drying. Calculations were performed for thuya wood (Tetraclinis articulate), which is primarily used in marquetry in the city of Essaouira and is well-known for its aesthetic qualities. Comparisons between the theoretical results and both experimental data and the results reported in pertinent literature were also performed and the results obtained via computer simulation agreed well with the experimental values. Analyses of the studied wood revealed that 15 drying cycles could be achieved within a year for an air velocity of 1 m/s and that the drying process was faster during the hot seasons than in cold seasons (430 h vs. 600 hr). Continued ventilation reduced the drying time, thereby increasing the number of drying cycles (33 vs. 15). Additionally, increasing the air velocity by 100% resulted in more than a 100% increase in the number of drying cycles; doubling the air velocity for thicker boards also resulted in an increase in drying cycles (23 vs. 15).

Suggested Citation

  • Bekkioui, Naoual & El hakiki, Sarra & Rachadi, Abdeljalil & Ez-Zahraouy, Hamid, 2020. "One-year simulation of a solar wood dryer with glazed walls in a Moroccan climate," Renewable Energy, Elsevier, vol. 155(C), pages 770-782.
  • Handle: RePEc:eee:renene:v:155:y:2020:i:c:p:770-782
    DOI: 10.1016/j.renene.2020.03.131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120304638
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.03.131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luna, D. & Nadeau, J.-P. & Jannot, Y., 2009. "Solar timber kilns: State of the art and foreseeable developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1446-1455, August.
    2. Khouya, A. & Draoui, A., 2019. "Computational drying model for solar kiln with latent heat energy storage: Case studies of thermal application," Renewable Energy, Elsevier, vol. 130(C), pages 796-813.
    3. Luna, D. & Nadeau, J.-P. & Jannot, Y., 2010. "Model and simulation of a solar kiln with energy storage," Renewable Energy, Elsevier, vol. 35(11), pages 2533-2542.
    4. Pirasteh, G. & Saidur, R. & Rahman, S.M.A. & Rahim, N.A., 2014. "A review on development of solar drying applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 133-148.
    5. Bentayeb, F. & Bekkioui, N. & Zeghmati, B., 2008. "Modelling and simulation of a wood solar dryer in a Moroccan climate," Renewable Energy, Elsevier, vol. 33(3), pages 501-506.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bekkioui, Naoual, 2021. "Performance comparison and economic analysis of three solar dryer designs for wood using a numerical simulation," Renewable Energy, Elsevier, vol. 164(C), pages 815-823.
    2. Lamrani, Bilal & Kuznik, Frédéric & Ajbar, Abdelhamid & Boumaza, Mourad, 2021. "Energy analysis and economic feasibility of wood dryers integrated with heat recovery unit and solar air heaters in cold and hot climates," Energy, Elsevier, vol. 228(C).
    3. Chtioui, Salwa & Khouya, Ahmed, 2024. "Optimizing solar energy for wood drying under various climates: A comparative study of flat plate and photovoltaic thermal solar collectors," Renewable Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bekkioui, Naoual, 2021. "Performance comparison and economic analysis of three solar dryer designs for wood using a numerical simulation," Renewable Energy, Elsevier, vol. 164(C), pages 815-823.
    2. Lamrani, Bilal & Kuznik, Frédéric & Ajbar, Abdelhamid & Boumaza, Mourad, 2021. "Energy analysis and economic feasibility of wood dryers integrated with heat recovery unit and solar air heaters in cold and hot climates," Energy, Elsevier, vol. 228(C).
    3. Khouya, Ahmed, 2020. "Effect of regeneration heat and energy storage on thermal drying performance in a hardwood solar kiln," Renewable Energy, Elsevier, vol. 155(C), pages 783-799.
    4. Ugwu, S.N. & Ugwuishiwu, B.O. & Ekechukwu, O.V. & Njoku, H. & Ani, A.O., 2015. "Design, construction, and evaluation of a mixed mode solar kiln with black-painted pebble bed for timber seasoning in a tropical setting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1404-1412.
    5. Hasan, Mahmudul & Zhang, Mengze & Wu, Weinan & Langrish, Timothy A.G., 2016. "Discounted cash flow analysis of greenhouse-type solar kilns," Renewable Energy, Elsevier, vol. 95(C), pages 404-412.
    6. Chtioui, Salwa & Khouya, Ahmed, 2024. "Optimizing solar energy for wood drying under various climates: A comparative study of flat plate and photovoltaic thermal solar collectors," Renewable Energy, Elsevier, vol. 221(C).
    7. Dake, Rock Aymar & N’Tsoukpoe, Kokouvi Edem & Kuznik, Frédéric & Lèye, Babacar & Ouédraogo, Igor W.K., 2021. "A review on the use of sorption materials in solar dryers," Renewable Energy, Elsevier, vol. 175(C), pages 965-979.
    8. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    9. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    10. Khouya, Ahmed, 2021. "Modelling and analysis of a hybrid solar dryer for woody biomass," Energy, Elsevier, vol. 216(C).
    11. Mohammadi, Kasra & Khorasanizadeh, Hossein, 2015. "A review of solar radiation on vertically mounted solar surfaces and proper azimuth angles in six Iranian major cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 504-518.
    12. Moudakkar, Touria & El Hallaoui, Z. & Vaudreuil, S. & Bounahmidi, T., 2019. "Modeling and performance analysis of a PTC for industrial phosphate flash drying," Energy, Elsevier, vol. 166(C), pages 1134-1148.
    13. Saidur, R. & Hossain, M.S. & Islam, M.R. & Fayaz, H. & Mohammed, H.A., 2011. "A review on kiln system modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2487-2500, June.
    14. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    15. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    16. Famiglietti, Antonio & Lecuona, Antonio, 2021. "Small-scale linear Fresnel collector using air as heat transfer fluid: Experimental characterization," Renewable Energy, Elsevier, vol. 176(C), pages 459-474.
    17. Hasan, Mahmudul & Langrish, Timothy Alan Granville, 2016. "Time-valued net energy analysis of solar kilns for wood drying: A solar thermal application," Energy, Elsevier, vol. 96(C), pages 415-426.
    18. Mansoor, Muhammad & Mariun, Norman & Toudeshki, Arash & Abdul Wahab, Noor Izzri & Mian, Ahmad Umair & Hojabri, Mojgan, 2017. "Innovating problem solving in power quality devices: A survey based on Dynamic Voltage Restorer case (DVR)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1207-1216.
    19. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    20. Fudholi, Ahmad & Sopian, Kamaruzzaman & Bakhtyar, B. & Gabbasa, Mohamed & Othman, Mohd Yusof & Ruslan, Mohd Hafidz, 2015. "Review of solar drying systems with air based solar collectors in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1191-1204.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:155:y:2020:i:c:p:770-782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.