IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v70y2017icp1207-1216.html
   My bibliography  Save this article

Innovating problem solving in power quality devices: A survey based on Dynamic Voltage Restorer case (DVR)

Author

Listed:
  • Mansoor, Muhammad
  • Mariun, Norman
  • Toudeshki, Arash
  • Abdul Wahab, Noor Izzri
  • Mian, Ahmad Umair
  • Hojabri, Mojgan

Abstract

The theory of inventive problem solving (TRIZ) is one of emerging creative problem solving methodologies. This paper proposes a way to simplify TRIZ for electrical domain usage, while making it feel less complex, more relevant and understand able for users in a specific sector. This research takes Dynamic Voltage Restorer (DVR) device as a case from electrical engineering domain, to demonstrate the proposed TRIZ based guidance framework development which will assist in solving problems of DVR devices. The proposed sector specific guidelines in particular segment of Electrical Engineering (e.g. power quality device DVR) will be closer, more comprehensible and particularly linked to key parameters of that sector. By using the derived guidance framework, field engineers with very basic TRIZ knowledge may apply TRIZ confidently for design and problem solving purpose.

Suggested Citation

  • Mansoor, Muhammad & Mariun, Norman & Toudeshki, Arash & Abdul Wahab, Noor Izzri & Mian, Ahmad Umair & Hojabri, Mojgan, 2017. "Innovating problem solving in power quality devices: A survey based on Dynamic Voltage Restorer case (DVR)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1207-1216.
  • Handle: RePEc:eee:rensus:v:70:y:2017:i:c:p:1207-1216
    DOI: 10.1016/j.rser.2016.12.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116310723
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.12.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luna, D. & Nadeau, J.-P. & Jannot, Y., 2009. "Solar timber kilns: State of the art and foreseeable developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1446-1455, August.
    2. Nikolić, Vlastimir & Sajjadi, Shahin & Petković, Dalibor & Shamshirband, Shahaboddin & Ćojbašić, Žarko & Por, Lip Yee, 2016. "Design and state of art of innovative wind turbine systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 258-265.
    3. Chai, Kah-Hin & Yeo, Catrina, 2012. "Overcoming energy efficiency barriers through systems approach—A conceptual framework," Energy Policy, Elsevier, vol. 46(C), pages 460-472.
    4. Mansoor, Muhammad & Mariun, Norman & Ismail, Napsiah & Wahab, Noor Izzri Abdul, 2013. "A guidance chart for most probable solution directions in sustainable energy developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 306-313.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Qi & Xiao, Fan & Tu, Chunming & Jiang, Fei & Zhu, Rongwu & Ye, Jian & Gao, Jiayuan, 2022. "An overview of series-connected power electronic converter with function extension strategies in the context of high-penetration of power electronics and renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    2. Sandrine Mathy & Patrick Criqui & Katharina Knoop & Manfred Fischedick & Sascha Samadi, 2016. "Uncertainty management and the dynamic adjustment of deep decarbonization pathways," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 47-62, June.
    3. Leurent, Martin & Jasserand, Frédéric & Locatelli, Giorgio & Palm, Jenny & Rämä, Miika & Trianni, Andrea, 2017. "Driving forces and obstacles to nuclear cogeneration in Europe: Lessons learnt from Finland," Energy Policy, Elsevier, vol. 107(C), pages 138-150.
    4. Häckel, Björn & Pfosser, Stefan & Tränkler, Timm, 2017. "Explaining the energy efficiency gap - Expected Utility Theory versus Cumulative Prospect Theory," Energy Policy, Elsevier, vol. 111(C), pages 414-426.
    5. Virkki-Hatakka, Terhi & Luoranen, Mika & Ikävalko, Markku, 2013. "Differences in perception: How the experts look at energy efficiency (findings from a Finnish survey)," Energy Policy, Elsevier, vol. 60(C), pages 499-508.
    6. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Nor, Khalil M.D. & Khoshnoudi, Masoumeh, 2016. "Using fuzzy multiple criteria decision making approaches for evaluating energy saving technologies and solutions in five star hotels: A new hierarchical framework," Energy, Elsevier, vol. 117(P1), pages 131-148.
    7. Jorge Cunha & Manuel Lopes Nunes & Fátima Lima, 2018. "Discerning the factors explaining the change in energy efficiency," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 163-179, December.
    8. Sara Walton & Annie Zhang & Conor O'Kane, 2020. "Energy eco‐innovations for sustainable development: Exploring organizational strategic capabilities through an energy cultures framework," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 812-826, March.
    9. Bell, Martha & Carrington, Gerry & Lawson, Rob & Stephenson, Janet, 2014. "Socio-technical barriers to the use of energy-efficient timber drying technology in New Zealand," Energy Policy, Elsevier, vol. 67(C), pages 747-755.
    10. Kangas, Hanna-Liisa & Lazarevic, David & Kivimaa, Paula, 2018. "Technical skills, disinterest and non-functional regulation: Barriers to building energy efficiency in Finland viewed by energy service companies," Energy Policy, Elsevier, vol. 114(C), pages 63-76.
    11. Bilous Liliia, 2020. "Determination of energy efficiency barriers taxonomy in socio-economic model of Ukraine," Technology audit and production reserves, Socionet;Technology audit and production reserves, vol. 3(4(53)), pages 14-21.
    12. Lin, Zhongwei & Chen, Zhenyu & Liu, Jizhen & Wu, Qiuwei, 2019. "Coordinated mechanical loads and power optimization of wind energy conversion systems with variable-weight model predictive control strategy," Applied Energy, Elsevier, vol. 236(C), pages 307-317.
    13. Xu, Jiuping & Liu, Tingting, 2020. "Technological paradigm-based approaches towards challenges and policy shifts for sustainable wind energy development," Energy Policy, Elsevier, vol. 142(C).
    14. Irini Barbero & Yacine Rezgui & Ioan Petri, 2023. "A European-wide exploratory study to analyse the relationship between training and energy efficiency in the construction sector," Environment Systems and Decisions, Springer, vol. 43(3), pages 337-357, September.
    15. Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski, 2019. "Thermodynamic Cycle Concepts for High-Efficiency Power Plants. Part B: Prosumer and Distributed Power Industry," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
    16. Bekkioui, Naoual & El hakiki, Sarra & Rachadi, Abdeljalil & Ez-Zahraouy, Hamid, 2020. "One-year simulation of a solar wood dryer with glazed walls in a Moroccan climate," Renewable Energy, Elsevier, vol. 155(C), pages 770-782.
    17. Solnørdal, Mette Talseth & Thyholdt, Sverre Braathen, 2019. "Absorptive capacity and energy efficiency in manufacturing firms – An empirical analysis in Norway," Energy Policy, Elsevier, vol. 132(C), pages 978-990.
    18. Zhang, Yixiang & Wei, Yimin & Zhou, Guanghui, 2018. "Promoting firms’ energy-saving behavior: The role of institutional pressures, top management support and financial slack," Energy Policy, Elsevier, vol. 115(C), pages 230-238.
    19. Zeng, Ming & Duan, Jinhui & Wang, Liang & Zhang, Yingjie & Xue, Song, 2015. "Orderly grid connection of renewable energy generation in China: Management mode, existing problems and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 14-28.
    20. Mette Talseth Solnørdal & Lene Foss, 2018. "Closing the Energy Efficiency Gap—A Systematic Review of Empirical Articles on Drivers to Energy Efficiency in Manufacturing Firms," Energies, MDPI, vol. 11(3), pages 1-30, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:70:y:2017:i:c:p:1207-1216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.