IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v155y2020icp278-285.html
   My bibliography  Save this article

Effects of porous electrode pore size and operating flow rate on the energy production of capacitive energy extraction

Author

Listed:
  • Nasir, Muhammad
  • Nakanishi, Yuji
  • Patmonoaji, Anindityo
  • Suekane, Tetsuya

Abstract

This study investigated essential parameters of capacitive energy extraction based on double-layer expansion (CDLE) device. The parameters, in particular, were the porous electrode pore size diameter and the operating flow rate. Understanding both parameters will help to improve the performance of the CDLE device for practical application. CDLE cycle was performed under different flow rates using three different samples with different average pore sizes. The data were analyzed based on the Gouy-Chapman-Stern (GCS) theory. It was found that higher energies were extracted with smaller average pore size, because it increases the number of transferred charges, due to the decrease in the diffusion distance of ions. Consequently, the redistribution of ions is also likely to occur and accelerates the rate of increase in the voltage. In addition, the energy extracted increases with the external voltage. Higher external voltage increases the charge transfer and reduces the differences between the voltage rise and the voltage drops during the solution exchange process. It was also found that the extracted energies in all the cycles were identical at different flow rates owing to no change in electric double layer (EDL) formation. However, as the flow rate increases, ions diffusion was accelerated, which improve power production.

Suggested Citation

  • Nasir, Muhammad & Nakanishi, Yuji & Patmonoaji, Anindityo & Suekane, Tetsuya, 2020. "Effects of porous electrode pore size and operating flow rate on the energy production of capacitive energy extraction," Renewable Energy, Elsevier, vol. 155(C), pages 278-285.
  • Handle: RePEc:eee:renene:v:155:y:2020:i:c:p:278-285
    DOI: 10.1016/j.renene.2020.03.163
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120304961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.03.163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bruce E. Logan & Menachem Elimelech, 2012. "Membrane-based processes for sustainable power generation using water," Nature, Nature, vol. 488(7411), pages 313-319, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Jian & Wu, Nianyuan & Li, Li & Xie, Meina & Xie, Shan & Wang, Xiaonan & Brandon, Nigel & Sun, Yifei & Chen, Jincan & Zhao, Yingru, 2022. "Performance and parameter optimization of a capacitive salinity/heat engine for harvesting salinity difference energy and low grade heat," Renewable Energy, Elsevier, vol. 183(C), pages 283-293.
    2. Zhi Zou & Longcheng Liu & Shuo Meng & Xiaolei Bian & Yongmei Li, 2021. "Applicability of Different Double-Layer Models for the Performance Assessment of the Capacitive Energy Extraction Based on Double Layer Expansion (CDLE) Technique," Energies, MDPI, vol. 14(18), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiadong Tang & Yun Wang & Hongyang Yang & Qianqian Zhang & Ce Wang & Leyuan Li & Zilong Zheng & Yuhong Jin & Hao Wang & Yifan Gu & Tieyong Zuo, 2024. "All-natural 2D nanofluidics as highly-efficient osmotic energy generators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Bui, Tri Quang & Magnussen, Ole-Petter & Cao, Vinh Duy & Wang, Wei & Kjøniksen, Anna-Lena & Aaker, Olav, 2021. "Osmotic engine converting energy from salinity difference to a hydraulic accumulator by utilizing polyelectrolyte hydrogels," Energy, Elsevier, vol. 232(C).
    4. Wan, Chun Feng & Chung, Tai-Shung, 2016. "Energy recovery by pressure retarded osmosis (PRO) in SWRO–PRO integrated processes," Applied Energy, Elsevier, vol. 162(C), pages 687-698.
    5. He, Wei & Wang, Jihong, 2017. "Feasibility study of energy storage by concentrating/desalinating water: Concentrated Water Energy Storage," Applied Energy, Elsevier, vol. 185(P1), pages 872-884.
    6. Kang, Byeong Dong & Kim, Hyun Jung & Lee, Moon Gu & Kim, Dong-Kwon, 2015. "Numerical study on energy harvesting from concentration gradient by reverse electrodialysis in anodic alumina nanopores," Energy, Elsevier, vol. 86(C), pages 525-538.
    7. Sagar Roy & Smruti Ragunath, 2018. "Emerging Membrane Technologies for Water and Energy Sustainability: Future Prospects, Constraints and Challenges," Energies, MDPI, vol. 11(11), pages 1-32, November.
    8. Tan, Guangcai & Xu, Nan & Gao, Dingxue & Zhu, Xiuping, 2022. "Superabsorbent graphene oxide/carbon nanotube hybrid Poly(acrylic acid-co-acrylamide) hydrogels for efficient salinity gradient energy harvest," Energy, Elsevier, vol. 258(C).
    9. Andrea Zaffora & Andrea Culcasi & Luigi Gurreri & Alessandro Cosenza & Alessandro Tamburini & Monica Santamaria & Giorgio Micale, 2020. "Energy Harvesting by Waste Acid/Base Neutralization via Bipolar Membrane Reverse Electrodialysis," Energies, MDPI, vol. 13(20), pages 1-22, October.
    10. Maisonneuve, Jonathan & Pillay, Pragasen & Laflamme, Claude B., 2015. "Osmotic power potential in remote regions of Quebec," Renewable Energy, Elsevier, vol. 81(C), pages 62-70.
    11. Tran, Thomas T.D. & Smith, Amanda D., 2017. "fEvaluation of renewable energy technologies and their potential for technical integration and cost-effective use within the U.S. energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1372-1388.
    12. Jin Wang & Zheng Cui & Shangzhen Li & Zeyuan Song & Miaolu He & Danxi Huang & Yuan Feng & YanZheng Liu & Ke Zhou & Xudong Wang & Lei Wang, 2024. "Unlocking osmotic energy harvesting potential in challenging real-world hypersaline environments through vermiculite-based hetero-nanochannels," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. He, Wei & Wang, Yang & Elyasigomari, Vahid & Shaheed, Mohammad Hasan, 2016. "Evaluation of the detrimental effects in osmotic power assisted reverse osmosis (RO) desalination," Renewable Energy, Elsevier, vol. 93(C), pages 608-619.
    14. Chanda, Sourayon & Tsai, Peichun Amy, 2019. "Numerical simulation of renewable power generation using reverse electrodialysis," Energy, Elsevier, vol. 176(C), pages 531-543.
    15. Massimo Marino & Lorenza Misuri & Andrea Carati & Doriano Brogioli, 2014. "Proof-of-Concept of a Zinc-Silver Battery for the Extraction of Energy from a Concentration Difference," Energies, MDPI, vol. 7(6), pages 1-20, June.
    16. Di Michele, F. & Felaco, E. & Gasser, I. & Serbinovskiy, A. & Struchtrup, H., 2019. "Modeling, simulation and optimization of a pressure retarded osmosis power station," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 189-207.
    17. Hu, Huakun & Xue, Wendong & Jiang, Peng & Li, Yong, 2022. "Bibliometric analysis for ocean renewable energy: An comprehensive review for hotspots, frontiers, and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    18. Katelyn E. Mueller & Jeffrey T. Thomas & Jeremiah X. Johnson & Joseph F. DeCarolis & Douglas F. Call, 2021. "Life cycle assessment of salinity gradient energy recovery using reverse electrodialysis," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1194-1206, October.
    19. He, Wei & Wang, Yang & Shaheed, Mohammad Hasan, 2015. "Stand-alone seawater RO (reverse osmosis) desalination powered by PV (photovoltaic) and PRO (pressure retarded osmosis)," Energy, Elsevier, vol. 86(C), pages 423-435.
    20. Wan, Chun Feng & Chung, Tai-Shung, 2016. "Maximize the operating profit of a SWRO-PRO integrated process for optimal water production and energy recovery," Renewable Energy, Elsevier, vol. 94(C), pages 304-313.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:155:y:2020:i:c:p:278-285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.