IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v155y2020icp1339-1346.html
   My bibliography  Save this article

Performance analysis of gas diffusion electrode with varying platinum loading under different oxidant condition

Author

Listed:
  • Umap, Vrushali M.
  • Ugwekar, Rajendra P.

Abstract

In the last decades, fuel cells are exceptionally capable and environmentally responsive energy exchange devices and have received great attention for the energy investigation. The components of fuel cells and its fabrication techniques essentially affect the performance of fuel cell. The gas diffusion electrode (GDE) is considered to be one of the key components of PEMFC. In the present work, hot pressing technique has been used for the fabrication of GDEs and were studied in detail. The catalyst loadings of 0.25, 0.5 and 2 mgPt/cm2 with different charging of carbon were layered on the surface of GDL opposite the membrane and its performance are correlated by using two different oxidants i.e. air and oxygen. The fuel cell performances have been compared by using performance curve at different cell stack temperature. The optimum catalyst loading for highest current density and power density was found to be 0.25 mgPt/cm2 on anode side and 0.5 mgPt/cm2 on cathode side. Surface quality of these GDLs have been investigated with the help of scanning electron microscopic (SEM) analysis by performing top surface and cross-sectional scan and confirms the effectiveness of hot-pressing method for better quality catalyst.

Suggested Citation

  • Umap, Vrushali M. & Ugwekar, Rajendra P., 2020. "Performance analysis of gas diffusion electrode with varying platinum loading under different oxidant condition," Renewable Energy, Elsevier, vol. 155(C), pages 1339-1346.
  • Handle: RePEc:eee:renene:v:155:y:2020:i:c:p:1339-1346
    DOI: 10.1016/j.renene.2020.04.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120305632
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.04.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Jian & Shahgaldi, Samaneh & Ozden, Adnan & Alaefour, Ibrahim E. & Li, Xianguo & Hamdullahpur, Feridun, 2019. "Effect of catalyst deposition on electrode structure, mass transport and performance of polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 255(C).
    2. Idoia San Martín & Alfredo Ursúa & Pablo Sanchis, 2014. "Modelling of PEM Fuel Cell Performance: Steady-State and Dynamic Experimental Validation," Energies, MDPI, vol. 7(2), pages 1-31, February.
    3. Fadzillah, D.M. & Rosli, M.I. & Talib, M.Z.M. & Kamarudin, S.K. & Daud, W.R.W., 2017. "Review on microstructure modelling of a gas diffusion layer for proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1001-1009.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Won, Jinyeon & Oh, Hwanyeong & Hong, Jongsup & Kim, Minjin & Lee, Won-Yong & Choi, Yoon-Young & Han, Soo-Bin, 2021. "Hybrid diagnosis method for initial faults of air supply systems in proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 180(C), pages 343-352.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Lingyi & Chen, Li & Zhang, Ruiyuan & Peng, Ming & Tao, Wen-Quan, 2022. "Pore-scale simulation of two-phase flow and oxygen reactive transport in gas diffusion layer of proton exchange membrane fuel cells: Effects of nonuniform wettability and porosity," Energy, Elsevier, vol. 253(C).
    2. Liu, Lina & Guo, Lingyi & Zhang, Ruiyuan & Chen, Li & Tao, Wen-Quan, 2021. "Numerically investigating two-phase reactive transport in multiple gas channels of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 302(C).
    3. Macias, A. & Kandidayeni, M. & Boulon, L. & Trovão, J.P., 2021. "Fuel cell-supercapacitor topologies benchmark for a three-wheel electric vehicle powertrain," Energy, Elsevier, vol. 224(C).
    4. Indro Biswas & Daniel G. Sánchez & Mathias Schulze & Jens Mitzel & Benjamin Kimmel & Aldo Saul Gago & Pawel Gazdzicki & K. Andreas Friedrich, 2020. "Advancement of Segmented Cell Technology in Low Temperature Hydrogen Technologies," Energies, MDPI, vol. 13(9), pages 1-22, May.
    5. Devin Fowler & Vladimir Gurau & Daniel Cox, 2019. "Bridging the Gap between Automated Manufacturing of Fuel Cell Components and Robotic Assembly of Fuel Cell Stacks," Energies, MDPI, vol. 12(19), pages 1-14, September.
    6. Meng, Huanru & Yu, Xianxian & Luo, Xiaobing & Tu, Zhengkai, 2024. "Modelling and operation characteristics of air-cooled PEMFC with metallic bipolar plate used in unmanned aerial vehicle," Energy, Elsevier, vol. 300(C).
    7. Xuqu Hu & Xingyi Wang & Juanzhong Chen & Qinwen Yang & Dapeng Jin & Xiang Qiu, 2017. "Numerical Investigations of the Combined Effects of Flow Rate and Methanol Concentration on DMFC Performance," Energies, MDPI, vol. 10(8), pages 1-15, July.
    8. Ma, Shuai & Lin, Meng & Lin, Tzu-En & Lan, Tian & Liao, Xun & Maréchal, François & Van herle, Jan & Yang, Yongping & Dong, Changqing & Wang, Ligang, 2021. "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Geonhui Gwak & Minwoo Kim & Dohwan Kim & Muhammad Faizan & Kyeongmin Oh & Jaeseung Lee & Jaeyoo Choi & Nammin Lee & Kisung Lim & Hyunchul Ju, 2019. "Performance and Efficiency Analysis of an HT-PEMFC System with an Absorption Chiller for Tri-Generation Applications," Energies, MDPI, vol. 12(5), pages 1-21, March.
    10. Jonas Breitinger & Mark Hellmann & Helerson Kemmer & Stephan Kabelac, 2023. "Automotive Fuel Cell Systems: Testing Highly Dynamic Scenarios," Energies, MDPI, vol. 16(2), pages 1-15, January.
    11. Andrzej Wilk & Daniel Węcel, 2020. "Measurements Based Analysis of the Proton Exchange Membrane Fuel Cell Operation in Transient State and Power of Own Needs," Energies, MDPI, vol. 13(2), pages 1-19, January.
    12. Jonny Esteban Villa Londono & Andrea Mazza & Enrico Pons & Harm Lok & Ettore Bompard, 2021. "Modelling and Control of a Grid-Connected RES-Hydrogen Hybrid Microgrid," Energies, MDPI, vol. 14(6), pages 1-25, March.
    13. Zhang, Jingjing & Wang, Biao & Jin, Junhong & Yang, Shenglin & Li, Guang, 2022. "A review of the microporous layer in proton exchange membrane fuel cells: Materials and structural designs based on water transport mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    14. Chen, Qin & Zhang, Guobin & Zhang, Xuzhong & Sun, Cheng & Jiao, Kui & Wang, Yun, 2021. "Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability," Applied Energy, Elsevier, vol. 286(C).
    15. Liu, Hao & Chen, Jian & Hissel, Daniel & Lu, Jianguo & Hou, Ming & Shao, Zhigang, 2020. "Prognostics methods and degradation indexes of proton exchange membrane fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    16. Sutharssan, Thamo & Montalvao, Diogo & Chen, Yong Kang & Wang, Wen-Chung & Pisac, Claudia & Elemara, Hakim, 2017. "A review on prognostics and health monitoring of proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 440-450.
    17. Qiu, Diankai & Peng, Linfa & Yi, Peiyun & Lehnert, Werner & Lai, Xinmin, 2021. "Review on proton exchange membrane fuel cell stack assembly: Quality evaluation, assembly method, contact behavior and process design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    18. Ye, Lingfeng & Qiu, Diankai & Peng, Linfa & Lai, Xinmin, 2022. "Microstructures and electrical conductivity properties of compressed gas diffusion layers using X-ray tomography," Applied Energy, Elsevier, vol. 326(C).
    19. Chavan, Sudarshan L. & Talange, Dhananjay B., 2017. "Modeling and performance evaluation of PEM fuel cell by controlling its input parameters," Energy, Elsevier, vol. 138(C), pages 437-445.
    20. San Martín, Idoia & Berrueta, Alberto & Sanchis, Pablo & Ursúa, Alfredo, 2018. "Methodology for sizing stand-alone hybrid systems: A case study of a traffic control system," Energy, Elsevier, vol. 153(C), pages 870-881.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:155:y:2020:i:c:p:1339-1346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.