IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1094-d105908.html
   My bibliography  Save this article

Numerical Investigations of the Combined Effects of Flow Rate and Methanol Concentration on DMFC Performance

Author

Listed:
  • Xuqu Hu

    (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China)

  • Xingyi Wang

    (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China)

  • Juanzhong Chen

    (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China)

  • Qinwen Yang

    (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China)

  • Dapeng Jin

    (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China)

  • Xiang Qiu

    (College of Science, Shanghai Institute of Technology, Shanghai 201418, China)

Abstract

A modified 3D numerical model on the energy conversion process in the anode side of a Direct Methanol Fuel Cell (DMFC) system was constructed and validated to published experimental results. Systematic simulations were performed to investigate the underlying mechanisms of the energy conversion process, and the combined effects of inlet flow rate and input methanol concentration were summarized systematically. The increase of flow rate was found to be an effective strategy to accelerate the internal flow fields, while the diffusion layer was proposed to be a critical component in the design of high-performance DMFC. The frontier for optimal conditions of DMFC’s output was also determined, which can be helpful to improve the energy conversion performance of DMFC in practical applications.

Suggested Citation

  • Xuqu Hu & Xingyi Wang & Juanzhong Chen & Qinwen Yang & Dapeng Jin & Xiang Qiu, 2017. "Numerical Investigations of the Combined Effects of Flow Rate and Methanol Concentration on DMFC Performance," Energies, MDPI, vol. 10(8), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1094-:d:105908
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1094/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1094/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Idoia San Martín & Alfredo Ursúa & Pablo Sanchis, 2014. "Modelling of PEM Fuel Cell Performance: Steady-State and Dynamic Experimental Validation," Energies, MDPI, vol. 7(2), pages 1-31, February.
    2. Ko, Johan & Chippar, Purushothama & Ju, Hyunchul, 2010. "A one-dimensional, two-phase model for direct methanol fuel cells – Part I: Model development and parametric study," Energy, Elsevier, vol. 35(5), pages 2149-2159.
    3. Wang, Luwen & He, Mingyan & Hu, Yue & Zhang, Yufeng & Liu, Xiaowei & Wang, Gaofeng, 2015. "A “4-cell” modular passive DMFC (direct methanol fuel cell) stack for portable applications," Energy, Elsevier, vol. 82(C), pages 229-235.
    4. Nguyen Duy Vinh & Hyung-Man Kim, 2016. "Comparison of Numerical and Experimental Studies for Flow-Field Optimization Based on Under-Rib Convection in Polymer Electrolyte Membrane Fuel Cells," Energies, MDPI, vol. 9(10), pages 1-17, October.
    5. Youngseung Na & Federico Zenith & Ulrike Krewer, 2015. "Increasing Fuel Efficiency of Direct Methanol Fuel Cell Systems with Feedforward Control of the Operating Concentration," Energies, MDPI, vol. 8(9), pages 1-21, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chung-Jen Chou & Shyh-Biau Jiang & Tse-Liang Yeh & Li-Duan Tsai & Ku-Yen Kang & Ching-Jung Liu, 2020. "A Portable Direct Methanol Fuel Cell Power Station for Long-Term Internet of Things Applications," Energies, MDPI, vol. 13(14), pages 1-13, July.
    2. Xuyang Zhang & Andrew Higier & Xu Zhang & Hongtan Liu, 2019. "Experimental Studies of Effect of Land Width in PEM Fuel Cells with Serpentine Flow Field and Carbon Cloth," Energies, MDPI, vol. 12(3), pages 1-10, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Shuo & Zhang, Yufeng & Ma, Zezhong & Sang, Shengtian & Liu, Xiaowei, 2016. "Systemic modeling and analysis of DMFC stack for behavior prediction in system-level application," Energy, Elsevier, vol. 112(C), pages 1015-1023.
    2. Devin Fowler & Vladimir Gurau & Daniel Cox, 2019. "Bridging the Gap between Automated Manufacturing of Fuel Cell Components and Robotic Assembly of Fuel Cell Stacks," Energies, MDPI, vol. 12(19), pages 1-14, September.
    3. Fang, Shuo & Zhang, Yufeng & Zou, Yuezhang & Sang, Shengtian & Liu, Xiaowei, 2017. "Structural design and analysis of a passive DMFC supplied with concentrated methanol solution," Energy, Elsevier, vol. 128(C), pages 50-61.
    4. Yuan, Zhenyu & Zhang, Manna & Zuo, Kaiyuan & Ren, Yongqiang, 2018. "The effect of gravity on inner transport and cell performance in passive micro direct methanol fuel cell," Energy, Elsevier, vol. 150(C), pages 28-37.
    5. Chippar, Purushothama & Ko, Johan & Ju, Hyunchul, 2010. "A global transient, one-dimensional, two-phase model for direct methanol fuel cells (DMFCs) – Part II: Analysis of the time-dependent thermal behavior of DMFCs," Energy, Elsevier, vol. 35(5), pages 2301-2308.
    6. Jin Hyun Kim & Gwang Goo Lee & Woo Tae Kim, 2017. "Comparison of Liquid Water Dynamics in Bent Gas Channels of a Polymer Electrolyte Membrane Fuel Cell with Different Channel Cross Sections in a Channel Flooding Situation," Energies, MDPI, vol. 10(6), pages 1-18, May.
    7. Eapen, Deepa Elizabeth & Suresh, Resmi & Patil, Sairaj & Rengaswamy, Raghunathan, 2021. "A systems engineering perspective on electrochemical energy technologies and a framework for application driven choice of technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    8. Macias, A. & Kandidayeni, M. & Boulon, L. & Trovão, J.P., 2021. "Fuel cell-supercapacitor topologies benchmark for a three-wheel electric vehicle powertrain," Energy, Elsevier, vol. 224(C).
    9. Tafaoli-Masoule, M. & Bahrami, A. & Elsayed, E.M., 2014. "Optimum design parameters and operating condition for maximum power of a direct methanol fuel cell using analytical model and genetic algorithm," Energy, Elsevier, vol. 70(C), pages 643-652.
    10. Jin Hyun Kim & Woo Tae Kim, 2018. "Numerical Investigation of Gas-Liquid Two-Phase Flow inside PEMFC Gas Channels with Rectangular and Trapezoidal Cross Sections," Energies, MDPI, vol. 11(6), pages 1-18, May.
    11. Alipour Najmi, Ali & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Investigation of NaOH concentration effect in injected fuel on the performance of passive direct methanol alkaline fuel cell with modified cation exchange membrane," Energy, Elsevier, vol. 94(C), pages 589-599.
    12. Geonhui Gwak & Minwoo Kim & Dohwan Kim & Muhammad Faizan & Kyeongmin Oh & Jaeseung Lee & Jaeyoo Choi & Nammin Lee & Kisung Lim & Hyunchul Ju, 2019. "Performance and Efficiency Analysis of an HT-PEMFC System with an Absorption Chiller for Tri-Generation Applications," Energies, MDPI, vol. 12(5), pages 1-21, March.
    13. Jonas Breitinger & Mark Hellmann & Helerson Kemmer & Stephan Kabelac, 2023. "Automotive Fuel Cell Systems: Testing Highly Dynamic Scenarios," Energies, MDPI, vol. 16(2), pages 1-15, January.
    14. Andrzej Wilk & Daniel Węcel, 2020. "Measurements Based Analysis of the Proton Exchange Membrane Fuel Cell Operation in Transient State and Power of Own Needs," Energies, MDPI, vol. 13(2), pages 1-19, January.
    15. Jonny Esteban Villa Londono & Andrea Mazza & Enrico Pons & Harm Lok & Ettore Bompard, 2021. "Modelling and Control of a Grid-Connected RES-Hydrogen Hybrid Microgrid," Energies, MDPI, vol. 14(6), pages 1-25, March.
    16. Prapainainar, Paweena & Du, Zehui & Theampetch, Apichaya & Prapainainar, Chaiwat & Kongkachuichay, Paisan & Holmes, Stuart M., 2020. "Properties and DMFC performance of nafion/mordenite composite membrane fabricated by solution-casting method with different solvent ratio," Energy, Elsevier, vol. 190(C).
    17. Min, Xiaoteng & Xia, Junjie & Zhang, Xiongwen & Ding, Kunpeng, 2022. "Study on the output performance of the proton exchange membrane fuel cells using print circuit board," Renewable Energy, Elsevier, vol. 197(C), pages 359-370.
    18. Alipour Najmi, Ali & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Study of physicochemical characterization of potassium-doped Nafion117 membrane and performance evaluation of air-breathing fuel cell in different alkali-methanol solutions," Energy, Elsevier, vol. 113(C), pages 1090-1098.
    19. Sharifi, Shima & Rahimi, Rahbar & Mohebbi-Kalhori, Davod & Colpan, C. Ozgur, 2020. "Coupled computational fluid dynamics-response surface methodology to optimize direct methanol fuel cell performance for greener energy generation," Energy, Elsevier, vol. 198(C).
    20. Xuyang Zhang & Andrew Higier & Xu Zhang & Hongtan Liu, 2019. "Experimental Studies of Effect of Land Width in PEM Fuel Cells with Serpentine Flow Field and Carbon Cloth," Energies, MDPI, vol. 12(3), pages 1-10, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1094-:d:105908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.