IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v152y2020icp1431-1438.html
   My bibliography  Save this article

Application and analysis of rapid determination of oxidative degradation of biodiesel by surface tension and UV absorbance

Author

Listed:
  • Wenchao, Wang
  • Yuling, Zhai
  • Fashe, Li
  • Ying, Li

Abstract

In this paper, the accelerated degradation and oxidation of Jatropha biodiesel were carried out at 110 °C through the Rancimat method. The applicability of surface tension and UV absorbance in the fuel oxidation degree detection was studied through Gas Chromatography-Mass Spectrometer(GC-MS) and acid value titration. The analysis of experimental data demonstrated that the acid value, surface tension and density of Jatropha biodiesel increased by 551%, 3.8% and 0.91% following oxidation, respectively, while the UV absorption intensity at 230 nm increased nearly 2 times. Subsequently to oxidation, the correlations among surface tension, UV absorbance and acid value of Jatropha biodiesel were 0.9743 and 0.9702. Based on this fact, four prediction models for the degree prediction of fuel oxidation through surface tension and UV absorbance were proposed, while the cross-validation method was utilized. The test analysis finally determined that the two models were Logarithm model and Power model, while the RMESP and R values were 0.093, 0.9875, 0.0705 and 0.9928. Both the accuracy and correlation were high. The acid value prediction model based on surface tension was 7.8%, while the acid value prediction model based on UV absorbance was 3.8%. Both could accurately determine the oxidation degree of biodiesel.

Suggested Citation

  • Wenchao, Wang & Yuling, Zhai & Fashe, Li & Ying, Li, 2020. "Application and analysis of rapid determination of oxidative degradation of biodiesel by surface tension and UV absorbance," Renewable Energy, Elsevier, vol. 152(C), pages 1431-1438.
  • Handle: RePEc:eee:renene:v:152:y:2020:i:c:p:1431-1438
    DOI: 10.1016/j.renene.2020.01.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120301014
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.01.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pattamaprom, C. & Pakdee, W. & Ngamjaroen, S., 2012. "Storage degradation of palm-derived biodiesels: Its effects on chemical properties and engine performance," Renewable Energy, Elsevier, vol. 37(1), pages 412-418.
    2. Tan, Yie Hua & Abdullah, Mohammad Omar & Kansedo, Jibrail & Mubarak, Nabisab Mujawar & Chan, Yen San & Nolasco-Hipolito, Cirilo, 2019. "Biodiesel production from used cooking oil using green solid catalyst derived from calcined fusion waste chicken and fish bones," Renewable Energy, Elsevier, vol. 139(C), pages 696-706.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Varatharajan, K. & Cheralathan, M., 2012. "Influence of fuel properties and composition on NOx emissions from biodiesel powered diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3702-3710.
    2. Fabián Vargas & Armando Pérez & Rene Delgado & Emilio Hernández & José Alejandro Suástegui, 2019. "Performance Analysis of a Compression Ignition Engine Using Mixture Biodiesel Palm and Diesel," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    3. Si, Buchun & Watson, Jamison & Wang, Zixin & Wang, Tengfei & Acero Triana, Juan S. & Zhang, Yuanhui, 2024. "Storage stability of biocrude oil fractional distillates derived from the hydrothermal liquefaction of food waste," Renewable Energy, Elsevier, vol. 220(C).
    4. Abu-Ghazala, Abdelmoniem H. & Abdelhady, Hosam H. & Mazhar, Amina A. & El-Deab, Mohamed S., 2022. "Valorization of hazard waste: Efficient utilization of white brick waste powder in the catalytic production of biodiesel from waste cooking oil via RSM optimization process," Renewable Energy, Elsevier, vol. 200(C), pages 1120-1133.
    5. Khatibi, Maryam & Khorasheh, Farhad & Larimi, Afsanehsadat, 2021. "Biodiesel production via transesterification of canola oil in the presence of Na–K doped CaO derived from calcined eggshell," Renewable Energy, Elsevier, vol. 163(C), pages 1626-1636.
    6. Bagchi, Sourav Kumar & Patnaik, Reeza & Sonkar, Sashi & Koley, Shankha & Rao, P. Srinivasa & Mallick, Nirupama, 2019. "Qualitative biodiesel production from a locally isolated chlorophycean microalga Scenedesmus obliquus (Turpin) Kützing GA 45 under closed raceway pond cultivation," Renewable Energy, Elsevier, vol. 139(C), pages 976-987.
    7. How, H.G. & Teoh, Y.H. & Krishnan, B. Navaneetha & Le, T.D. & Nguyen, H.T. & Prabhu, C., 2021. "Prediction of optimum Palm Oil Methyl Ester fuel blend for compression ignition engine using Response Surface Methodology," Energy, Elsevier, vol. 234(C).
    8. Monteiro, Rodolpho R.C. & Arana-Peña, Sara & da Rocha, Thays N. & Miranda, Letícia P. & Berenguer-Murcia, Ángel & Tardioli, Paulo W. & dos Santos, José C.S. & Fernandez-Lafuente, Roberto, 2021. "Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution?," Renewable Energy, Elsevier, vol. 164(C), pages 1566-1587.
    9. Roveda, Ana Carolina & Comin, Marina & Caires, Anderson Rodrigues Lima & Ferreira, Valdir Souza & Trindade, Magno Aparecido Gonçalves, 2016. "Thermal stability enhancement of biodiesel induced by a synergistic effect between conventional antioxidants and an alternative additive," Energy, Elsevier, vol. 109(C), pages 260-265.
    10. Mathimani, Thangavel & Senthil Kumar, Tamilkolundu & Chandrasekar, Murugesan & Uma, Lakshmanan & Prabaharan, Dharmar, 2017. "Assessment of fuel properties, engine performance and emission characteristics of outdoor grown marine Chlorella vulgaris BDUG 91771 biodiesel," Renewable Energy, Elsevier, vol. 105(C), pages 637-646.
    11. Melo, Vinícius Mateó e & Ferreira, Gabriela Filipini & Fregolente, Leonardo Vasconcelos, 2024. "Sustainable catalysts for biodiesel production: The potential of CaO supported on sugarcane bagasse biochar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    12. Helmi, Fatemeh & Helmi, Maryam & Hemmati, Alireza, 2022. "Phosphomolybdic acid/chitosan as acid solid catalyst using for biodiesel production from pomegranate seed oil via microwave heating system: RSM optimization and kinetic study," Renewable Energy, Elsevier, vol. 189(C), pages 881-898.
    13. Suherman Suherman & Ilmi Abdullah & Muhammad Sabri & Arridina Susan Silitonga, 2023. "Evaluation of Physicochemical Properties Composite Biodiesel from Waste Cooking Oil and Schleichera oleosa Oil," Energies, MDPI, vol. 16(15), pages 1-20, August.
    14. R, Gopi & Thangarasu, Vinoth & Vinayakaselvi M, Angkayarkan & Ramanathan, Anand, 2022. "A critical review of recent advancements in continuous flow reactors and prominent integrated microreactors for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    15. AlSharifi, Mariam & Znad, Hussein, 2020. "Transesterification of waste canola oil by lithium/zinc composite supported on waste chicken bone as an effective catalyst," Renewable Energy, Elsevier, vol. 151(C), pages 740-749.
    16. Mathimani, Thangavel & Uma, Lakshmanan & Prabaharan, Dharmar, 2015. "Homogeneous acid catalysed transesterification of marine microalga Chlorella sp. BDUG 91771 lipid – An efficient biodiesel yield and its characterization," Renewable Energy, Elsevier, vol. 81(C), pages 523-533.
    17. Anahas, Antonyraj Matharasi Perianaika & Muralitharan, Gangatharan, 2019. "Central composite design (CCD) optimization of phytohormones supplementation for enhanced cyanobacterial biodiesel production," Renewable Energy, Elsevier, vol. 130(C), pages 749-761.
    18. Takeno, Mitsuo L. & Mendonça, Iasmin M. & Barros, Silma de S. & de Sousa Maia, Paulo J. & Pessoa Jr., Wanison A.G. & Souza, Mayane P. & Soares, Elzalina R. & Bindá, Rosane dos S. & Calderaro, Fábio L., 2021. "A novel CaO-based catalyst obtained from silver croaker (Plagioscion squamosissimus) stone for biodiesel synthesis: Waste valorization and process optimization," Renewable Energy, Elsevier, vol. 172(C), pages 1035-1045.
    19. Thangaraja, J. & Anand, K. & Mehta, Pramod S., 2016. "Biodiesel NOx penalty and control measures - a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 1-24.
    20. Yusuff, Adeyinka Sikiru & Gbadamosi, Afeez Olayinka & Atray, Neeraj, 2022. "Development of a zeolite supported CaO derived from chicken eggshell as active base catalyst for used cooking oil biodiesel production," Renewable Energy, Elsevier, vol. 197(C), pages 1151-1162.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:152:y:2020:i:c:p:1431-1438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.