Storage degradation of palm-derived biodiesels: Its effects on chemical properties and engine performance
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2011.05.032
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Moser, Bryan R., 2011. "Influence of extended storage on fuel properties of methyl esters prepared from canola, palm, soybean and sunflower oils," Renewable Energy, Elsevier, vol. 36(4), pages 1221-1226.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fabián Vargas & Armando Pérez & Rene Delgado & Emilio Hernández & José Alejandro Suástegui, 2019. "Performance Analysis of a Compression Ignition Engine Using Mixture Biodiesel Palm and Diesel," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
- Varatharajan, K. & Cheralathan, M., 2012. "Influence of fuel properties and composition on NOx emissions from biodiesel powered diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3702-3710.
- Mathimani, Thangavel & Senthil Kumar, Tamilkolundu & Chandrasekar, Murugesan & Uma, Lakshmanan & Prabaharan, Dharmar, 2017. "Assessment of fuel properties, engine performance and emission characteristics of outdoor grown marine Chlorella vulgaris BDUG 91771 biodiesel," Renewable Energy, Elsevier, vol. 105(C), pages 637-646.
- Mathimani, Thangavel & Uma, Lakshmanan & Prabaharan, Dharmar, 2015. "Homogeneous acid catalysed transesterification of marine microalga Chlorella sp. BDUG 91771 lipid – An efficient biodiesel yield and its characterization," Renewable Energy, Elsevier, vol. 81(C), pages 523-533.
- How, H.G. & Teoh, Y.H. & Krishnan, B. Navaneetha & Le, T.D. & Nguyen, H.T. & Prabhu, C., 2021. "Prediction of optimum Palm Oil Methyl Ester fuel blend for compression ignition engine using Response Surface Methodology," Energy, Elsevier, vol. 234(C).
- Si, Buchun & Watson, Jamison & Wang, Zixin & Wang, Tengfei & Acero Triana, Juan S. & Zhang, Yuanhui, 2024. "Storage stability of biocrude oil fractional distillates derived from the hydrothermal liquefaction of food waste," Renewable Energy, Elsevier, vol. 220(C).
- Bagchi, Sourav Kumar & Patnaik, Reeza & Sonkar, Sashi & Koley, Shankha & Rao, P. Srinivasa & Mallick, Nirupama, 2019. "Qualitative biodiesel production from a locally isolated chlorophycean microalga Scenedesmus obliquus (Turpin) Kützing GA 45 under closed raceway pond cultivation," Renewable Energy, Elsevier, vol. 139(C), pages 976-987.
- Cavalheiro, Leandro Fontoura & Misutsu, Marcelo Yukio & Rial, Rafael Cardoso & Viana, Luíz Henrique & Oliveira, Lincoln Carlos Silva, 2020. "Characterization of residues and evaluation of the physico chemical properties of soybean biodiesel and biodiesel: Diesel blends in different storage conditions," Renewable Energy, Elsevier, vol. 151(C), pages 454-462.
- Roveda, Ana Carolina & Comin, Marina & Caires, Anderson Rodrigues Lima & Ferreira, Valdir Souza & Trindade, Magno Aparecido Gonçalves, 2016. "Thermal stability enhancement of biodiesel induced by a synergistic effect between conventional antioxidants and an alternative additive," Energy, Elsevier, vol. 109(C), pages 260-265.
- Thangaraja, J. & Anand, K. & Mehta, Pramod S., 2016. "Biodiesel NOx penalty and control measures - a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 1-24.
- Wenchao, Wang & Yuling, Zhai & Fashe, Li & Ying, Li, 2020. "Application and analysis of rapid determination of oxidative degradation of biodiesel by surface tension and UV absorbance," Renewable Energy, Elsevier, vol. 152(C), pages 1431-1438.
- Anahas, Antonyraj Matharasi Perianaika & Muralitharan, Gangatharan, 2019. "Central composite design (CCD) optimization of phytohormones supplementation for enhanced cyanobacterial biodiesel production," Renewable Energy, Elsevier, vol. 130(C), pages 749-761.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Renas Hasan Saeed Saeed & Youssef Kassem & Hüseyin Çamur, 2019. "Effect of Biodiesel Mixture Derived from Waste Frying-Corn, Frying-Canola-Corn and Canola-Corn Cooking Oils with Various Ages on Physicochemical Properties," Energies, MDPI, vol. 12(19), pages 1-26, September.
- Youssef Kassem & Hüseyin Çamur & Ebaa Alassi, 2020. "Biodiesel Production from Four Residential Waste Frying Oils: Proposing Blends for Improving the Physicochemical Properties of Methyl Biodiesel," Energies, MDPI, vol. 13(16), pages 1-25, August.
- Moser, Bryan R., 2012. "Efficacy of gossypol as an antioxidant additive in biodiesel," Renewable Energy, Elsevier, vol. 40(1), pages 65-70.
- Chen, Wei & Ma, Lin & Zhou, Peng-peng & Zhu, Yuan-min & Wang, Xiao-peng & Luo, Xin-an & Bao, Zhen-dong & Yu, Long-jiang, 2015. "A novel feedstock for biodiesel production: The application of palmitic acid from Schizochytrium," Energy, Elsevier, vol. 86(C), pages 128-138.
- Amani, H. & Ahmad, Z. & Hameed, B.H., 2014. "Synthesis of fatty acid methyl esters via the methanolysis of palm oil over Ca3.5xZr0.5yAlxO3 mixed oxide catalyst," Renewable Energy, Elsevier, vol. 66(C), pages 680-685.
- Sorate, Kamalesh A. & Bhale, Purnanand V., 2015. "Biodiesel properties and automotive system compatibility issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 777-798.
- Moser, Bryan R. & Dien, Bruce S. & Seliskar, Denise M. & Gallagher, John L., 2013. "Seashore mallow (Kosteletzkya pentacarpos) as a salt-tolerant feedstock for production of biodiesel and ethanol," Renewable Energy, Elsevier, vol. 50(C), pages 833-839.
- Norwazan Abdul Rahim & Mohammad Nazri Mohd Jaafar & Syazwana Sapee & Hazir Farouk Elraheem, 2016. "Effect on Particulate and Gas Emissions by Combusting Biodiesel Blend Fuels Made from Different Plant Oil Feedstocks in a Liquid Fuel Burner," Energies, MDPI, vol. 9(8), pages 1-18, August.
- Cavalheiro, Leandro Fontoura & Misutsu, Marcelo Yukio & Rial, Rafael Cardoso & Viana, Luíz Henrique & Oliveira, Lincoln Carlos Silva, 2020. "Characterization of residues and evaluation of the physico chemical properties of soybean biodiesel and biodiesel: Diesel blends in different storage conditions," Renewable Energy, Elsevier, vol. 151(C), pages 454-462.
More about this item
Keywords
Palm; Palm stearin; Biodiesel; Degradation; Engine performance; Emission;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:37:y:2012:i:1:p:412-418. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.