IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v64y2014icp853-867.html
   My bibliography  Save this article

The role of demand response in single and multi-objective wind-thermal generation scheduling: A stochastic programming

Author

Listed:
  • Falsafi, Hananeh
  • Zakariazadeh, Alireza
  • Jadid, Shahram

Abstract

This paper focuses on using DR (Demand Response) as a means to provide reserve in order to cover uncertainty in wind power forecasting in SG (Smart Grid) environment. The proposed stochastic model schedules energy and reserves provided by both of generating units and responsive loads in power systems with high penetration of wind power. This model is formulated as a two-stage stochastic programming, where first-stage is associated with electricity market, its rules and constraints and the second-stage is related to actual operation of the power system and its physical limitations in each scenario. The discrete retail customer responses to incentive-based DR programs are aggregated by DRPs (Demand Response Providers) and are submitted as a load change price and amount offer package to ISO (Independent System Operator). Also, price-based DR program behavior and random nature of wind power are modeled by price elasticity concept of the demand and normal probability distribution function, respectively. In the proposed model, DRPs can participate in energy market as well as reserve market and submit their offers to the wholesale electricity market. This approach is implemented on a modified IEEE 30-bus test system over a daily time horizon. The simulation results are analyzed in six different case studies. The cost, emission and multiobjective functions are optimized in both without and with DR cases. The multiobjective generation scheduling model is solved using augmented epsilon constraint method and the best solution can be chosen by Entropy and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) methods. The results indicate demand side participation in energy and reserve scheduling reduces the total operation costs and emissions.

Suggested Citation

  • Falsafi, Hananeh & Zakariazadeh, Alireza & Jadid, Shahram, 2014. "The role of demand response in single and multi-objective wind-thermal generation scheduling: A stochastic programming," Energy, Elsevier, vol. 64(C), pages 853-867.
  • Handle: RePEc:eee:energy:v:64:y:2014:i:c:p:853-867
    DOI: 10.1016/j.energy.2013.10.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213008864
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.10.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vahidinasab, V. & Jadid, S., 2010. "Joint economic and emission dispatch in energy markets: A multiobjective mathematical programming approach," Energy, Elsevier, vol. 35(3), pages 1497-1504.
    2. Torabi, S.A. & Hamedi, M. & Ashayeri, J., 2010. "A Multi-Objective Optimization Approach for Multi-Head Beam-Type Placement Machines," Discussion Paper 2010-128, Tilburg University, Center for Economic Research.
    3. Pina, André & Silva, Carlos & Ferrão, Paulo, 2012. "The impact of demand side management strategies in the penetration of renewable electricity," Energy, Elsevier, vol. 41(1), pages 128-137.
    4. Torabi, S.A. & Hamedi, M. & Ashayeri, J., 2010. "A Multi-Objective Optimization Approach for Multi-Head Beam-Type Placement Machines," Other publications TiSEM 8ea272ae-66f1-4999-aec7-8, Tilburg University, School of Economics and Management.
    5. Filippini, Massimo & Pachauri, Shonali, 2004. "Elasticities of electricity demand in urban Indian households," Energy Policy, Elsevier, vol. 32(3), pages 429-436, February.
    6. Partovi, Farzad & Nikzad, Mehdi & Mozafari, Babak & Ranjbar, Ali Mohamad, 2011. "A stochastic security approach to energy and spinning reserve scheduling considering demand response program," Energy, Elsevier, vol. 36(5), pages 3130-3137.
    7. Azizipanah-Abarghooee, Rasoul & Niknam, Taher & Roosta, Alireza & Malekpour, Ahmad Reza & Zare, Mohsen, 2012. "Probabilistic multiobjective wind-thermal economic emission dispatch based on point estimated method," Energy, Elsevier, vol. 37(1), pages 322-335.
    8. Peter C. Reiss & Matthew W. White, 2005. "Household Electricity Demand, Revisited," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 853-883.
    9. Hong, Ying-Yi & Lin, Jie-Kai, 2013. "Interactive multi-objective active power scheduling considering uncertain renewable energies using adaptive chaos clonal evolutionary programming," Energy, Elsevier, vol. 53(C), pages 212-220.
    10. Aalami, H.A. & Moghaddam, M. Parsa & Yousefi, G.R., 2010. "Demand response modeling considering Interruptible/Curtailable loads and capacity market programs," Applied Energy, Elsevier, vol. 87(1), pages 243-250, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    2. Glotić, Arnel & Glotić, Adnan & Kitak, Peter & Pihler, Jože & Tičar, Igor, 2014. "Optimization of hydro energy storage plants by using differential evolution algorithm," Energy, Elsevier, vol. 77(C), pages 97-107.
    3. Özyön, Serdar & Temurtaş, Hasan & Durmuş, Burhanettin & Kuvat, Gültekin, 2012. "Charged system search algorithm for emission constrained economic power dispatch problem," Energy, Elsevier, vol. 46(1), pages 420-430.
    4. Sun, Chuanwang & Lin, Boqiang, 2013. "Reforming residential electricity tariff in China: Block tariffs pricing approach," Energy Policy, Elsevier, vol. 60(C), pages 741-752.
    5. Narimani, Mohammad Rasoul & Azizipanah-Abarghooee, Rasoul & Zoghdar-Moghadam-Shahrekohne, Behrouz & Gholami, Kayvan, 2013. "A novel approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type," Energy, Elsevier, vol. 49(C), pages 119-136.
    6. Jia, Jun-Jun & Guo, Jin & Wei, Chu, 2021. "Elasticities of residential electricity demand in China under increasing-block pricing constraint: New estimation using household survey data," Energy Policy, Elsevier, vol. 156(C).
    7. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    8. Kavousian, Amir & Rajagopal, Ram & Fischer, Martin, 2013. "Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior," Energy, Elsevier, vol. 55(C), pages 184-194.
    9. Athukorala, Wasantha & Wilson, Clevo & Managi, Shunsuke & Karunarathna, Muditha, 2019. "Household demand for electricity: The role of market distortions and prices in competition policy," Energy Policy, Elsevier, vol. 134(C).
    10. Neda Hajibandeh & Miadreza Shafie-khah & Sobhan Badakhshan & Jamshid Aghaei & Sílvio J. P. S. Mariano & João P. S. Catalão, 2019. "Multi-Objective Market Clearing Model with an Autonomous Demand Response Scheme," Energies, MDPI, vol. 12(7), pages 1-16, April.
    11. Bahmani-Firouzi, Bahman & Farjah, Ebrahim & Azizipanah-Abarghooee, Rasoul, 2013. "An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties," Energy, Elsevier, vol. 50(C), pages 232-244.
    12. Claudio Agostini & Cecilia Plottier & Eduardo Saavedra, 2009. "La Demanda Residencial por Energía Eléctrica en Chile," ILADES-UAH Working Papers inv240, Universidad Alberto Hurtado/School of Economics and Business.
    13. Sudarshan, Anant, 2017. "Nudges in the marketplace: The response of household electricity consumption to information and monetary incentives," Journal of Economic Behavior & Organization, Elsevier, vol. 134(C), pages 320-335.
    14. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    15. Gassmann, Franziska, 2014. "Switching the lights off: The impact of energy tariff increases on households in the Kyrgyz Republic," Journal of Comparative Economics, Elsevier, vol. 42(3), pages 755-769.
    16. Ghaith, Ahmad F. & Epplin, Francis M., 2017. "Consequences of a carbon tax on household electricity use and cost, carbon emissions, and economics of household solar and wind," Energy Economics, Elsevier, vol. 67(C), pages 159-168.
    17. Çetinkaya, Murat & Başaran, Alparslan A. & Bağdadioğlu, Necmiddin, 2015. "Electricity reform, tariff and household elasticity in Turkey," Utilities Policy, Elsevier, vol. 37(C), pages 79-85.
    18. Silva, Hendrigo Batista da & Santiago, Leonardo P., 2018. "On the trade-off between real-time pricing and the social acceptability costs of demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1513-1521.
    19. Hovgaard, Tobias Gybel & Larsen, Lars F.S. & Edlund, Kristian & Jørgensen, John Bagterp, 2012. "Model predictive control technologies for efficient and flexible power consumption in refrigeration systems," Energy, Elsevier, vol. 44(1), pages 105-116.
    20. Sane Lei Lei Wynn & Watcharakorn Pinthurat & Boonruang Marungsri, 2022. "Multi-Objective Optimization for Peak Shaving with Demand Response under Renewable Generation Uncertainty," Energies, MDPI, vol. 15(23), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:64:y:2014:i:c:p:853-867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.