Benefits of forecasting and energy storage in isolated grids with large wind penetration – The case of Sao Vicente
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2016.12.061
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
- Kavasseri, Rajesh G. & Seetharaman, Krithika, 2009. "Day-ahead wind speed forecasting using f-ARIMA models," Renewable Energy, Elsevier, vol. 34(5), pages 1388-1393.
- Roulston, M.S. & Kaplan, D.T. & Hardenberg, J. & Smith, L.A., 2003. "Using medium-range weather forcasts to improve the value of wind energy production," Renewable Energy, Elsevier, vol. 28(4), pages 585-602.
- Weisser, Daniel & Garcia, Raquel S., 2005. "Instantaneous wind energy penetration in isolated electricity grids: concepts and review," Renewable Energy, Elsevier, vol. 30(8), pages 1299-1308.
- Selin Kocaman, Ayse & Abad, Carlos & Troy, Tara J. & Tim Huh, Woonghee & Modi, Vijay, 2016. "A stochastic model for a macroscale hybrid renewable energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 688-703.
- Lazić, Lazar & Pejanović, Goran & Živković, Momčilo, 2010. "Wind forecasts for wind power generation using the Eta model," Renewable Energy, Elsevier, vol. 35(6), pages 1236-1243.
- Aksoy, Hafzullah & Fuat Toprak, Z & Aytek, Ali & Erdem Ünal, N, 2004. "Stochastic generation of hourly mean wind speed data," Renewable Energy, Elsevier, vol. 29(14), pages 2111-2131.
- Malheiro, André & Castro, Pedro M. & Lima, Ricardo M. & Estanqueiro, Ana, 2015. "Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems," Renewable Energy, Elsevier, vol. 83(C), pages 646-657.
- Sfetsos, A., 2002. "A novel approach for the forecasting of mean hourly wind speed time series," Renewable Energy, Elsevier, vol. 27(2), pages 163-174.
- Al-Alawi, Ali & Islam, S.M, 2004. "Demand side management for remote area power supply systems incorporating solar irradiance model," Renewable Energy, Elsevier, vol. 29(13), pages 2027-2036.
- Coelho, Vitor N. & Coelho, Igor M. & Coelho, Bruno N. & Reis, Agnaldo J.R. & Enayatifar, Rasul & Souza, Marcone J.F. & Guimarães, Frederico G., 2016. "A self-adaptive evolutionary fuzzy model for load forecasting problems on smart grid environment," Applied Energy, Elsevier, vol. 169(C), pages 567-584.
- Sfetsos, A., 2000. "A comparison of various forecasting techniques applied to mean hourly wind speed time series," Renewable Energy, Elsevier, vol. 21(1), pages 23-35.
- Coelho, Vitor N. & Coelho, Igor M. & Coelho, Bruno N. & Cohen, Miri Weiss & Reis, Agnaldo J.R. & Silva, Sidelmo M. & Souza, Marcone J.F. & Fleming, Peter J. & Guimarães, Frederico G., 2016. "Multi-objective energy storage power dispatching using plug-in vehicles in a smart-microgrid," Renewable Energy, Elsevier, vol. 89(C), pages 730-742.
- Rigo-Mariani, Rémy & Sareni, Bruno & Roboam, Xavier & Turpin, Christophe, 2014. "Optimal power dispatching strategies in smart-microgrids with storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 649-658.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Surroop, Dinesh & Raghoo, Pravesh & Bundhoo, Zumar M.A., 2018. "Comparison of energy systems in Small Island Developing States," Utilities Policy, Elsevier, vol. 54(C), pages 46-54.
- Luca Massidda & Marino Marrocu, 2018. "Quantile Regression Post-Processing of Weather Forecast for Short-Term Solar Power Probabilistic Forecasting," Energies, MDPI, vol. 11(7), pages 1-20, July.
- Marino Marrocu & Luca Massidda, 2017. "A Simple and Effective Approach for the Prediction of Turbine Power Production From Wind Speed Forecast," Energies, MDPI, vol. 10(12), pages 1-14, November.
- Kocaman, Ayse Selin & Ozyoruk, Emin & Taneja, Shantanu & Modi, Vijay, 2020. "A stochastic framework to evaluate the impact of agricultural load flexibility on the sizing of renewable energy systems," Renewable Energy, Elsevier, vol. 152(C), pages 1067-1078.
- Andrea Micangeli & Riccardo Del Citto & Isaac Nzue Kiva & Simone Giovanni Santori & Valeria Gambino & Jeremiah Kiplagat & Daniele Viganò & Davide Fioriti & Davide Poli, 2017. "Energy Production Analysis and Optimization of Mini-Grid in Remote Areas: The Case Study of Habaswein, Kenya," Energies, MDPI, vol. 10(12), pages 1-23, December.
- Peker, Meltem & Kocaman, Ayse Selin & Kara, Bahar Y., 2018. "Benefits of transmission switching and energy storage in power systems with high renewable energy penetration," Applied Energy, Elsevier, vol. 228(C), pages 1182-1197.
- Luca Massidda & Marino Marrocu, 2017. "Decoupling Weather Influence from User Habits for an Optimal Electric Load Forecast System," Energies, MDPI, vol. 10(12), pages 1-16, December.
- Anderson, Benjamin & Rane, Jayaraj & Khan, Rabia, 2023. "Distributed wind-hybrid microgrids with autonomous controls and forecasting," Applied Energy, Elsevier, vol. 333(C).
- Kang, Hyuna & Jung, Seunghoon & Lee, Minhyun & Hong, Taehoon, 2022. "How to better share energy towards a carbon-neutral city? A review on application strategies of battery energy storage system in city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- Feras Alasali & Husam Foudeh & Esraa Mousa Ali & Khaled Nusair & William Holderbaum, 2021. "Forecasting and Modelling the Uncertainty of Low Voltage Network Demand and the Effect of Renewable Energy Sources," Energies, MDPI, vol. 14(8), pages 1-31, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
- Cadenas, Erasmo & Rivera, Wilfrido, 2010. "Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model," Renewable Energy, Elsevier, vol. 35(12), pages 2732-2738.
- Zhang, Yu & Li, Yanting & Zhang, Guangyao, 2020. "Short-term wind power forecasting approach based on Seq2Seq model using NWP data," Energy, Elsevier, vol. 213(C).
- Liu, Hui & Chen, Chao & Tian, Hong-qi & Li, Yan-fei, 2012. "A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks," Renewable Energy, Elsevier, vol. 48(C), pages 545-556.
- Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
- Jiani Heng & Chen Wang & Xuejing Zhao & Liye Xiao, 2016. "Research and Application Based on Adaptive Boosting Strategy and Modified CGFPA Algorithm: A Case Study for Wind Speed Forecasting," Sustainability, MDPI, vol. 8(3), pages 1-25, March.
- Cao, Qing & Ewing, Bradley T. & Thompson, Mark A., 2012. "Forecasting wind speed with recurrent neural networks," European Journal of Operational Research, Elsevier, vol. 221(1), pages 148-154.
- Erdong Zhao & Jing Zhao & Liwei Liu & Zhongyue Su & Ning An, 2015. "Hybrid Wind Speed Prediction Based on a Self-Adaptive ARIMAX Model with an Exogenous WRF Simulation," Energies, MDPI, vol. 9(1), pages 1-20, December.
- Coelho, Vitor N. & Weiss Cohen, Miri & Coelho, Igor M. & Liu, Nian & Guimarães, Frederico Gadelha, 2017. "Multi-agent systems applied for energy systems integration: State-of-the-art applications and trends in microgrids," Applied Energy, Elsevier, vol. 187(C), pages 820-832.
- Akçay, Hüseyin & Filik, Tansu, 2017. "Short-term wind speed forecasting by spectral analysis from long-term observations with missing values," Applied Energy, Elsevier, vol. 191(C), pages 653-662.
- Lahouar, A. & Ben Hadj Slama, J., 2017. "Hour-ahead wind power forecast based on random forests," Renewable Energy, Elsevier, vol. 109(C), pages 529-541.
- Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
- A. Alexandridis & A. Zapranis, 2013. "Wind Derivatives: Modeling and Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 41(3), pages 299-326, March.
- Coelho, Vitor N. & Coelho, Igor M. & Coelho, Bruno N. & de Oliveira, Glauber C. & Barbosa, Alexandre C. & Pereira, Leo & de Freitas, Alan & Santos, Haroldo G. & Ochi, Luis S. & Guimarães, Frederico G., 2017. "A communitarian microgrid storage planning system inside the scope of a smart city," Applied Energy, Elsevier, vol. 201(C), pages 371-381.
- Zhao, Weigang & Wei, Yi-Ming & Su, Zhongyue, 2016. "One day ahead wind speed forecasting: A resampling-based approach," Applied Energy, Elsevier, vol. 178(C), pages 886-901.
- Feijóo, Andrés & Villanueva, Daniel, 2016. "Assessing wind speed simulation methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 473-483.
- Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
- Zonggui Yao & Chen Wang, 2018. "A Hybrid Model Based on A Modified Optimization Algorithm and An Artificial Intelligence Algorithm for Short-Term Wind Speed Multi-Step Ahead Forecasting," Sustainability, MDPI, vol. 10(5), pages 1-33, May.
- Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
- Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
More about this item
Keywords
Isolated grid; Wind speed forecasting; Rolling horizon; ARIMA model; Monte Carlo simulation; Storage;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:105:y:2017:i:c:p:167-174. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.