IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v151y2020icp1186-1195.html
   My bibliography  Save this article

A cross-European efficiency assessment of offshore wind farms: A DEA approach

Author

Listed:
  • Akbari, Negar
  • Jones, Dylan
  • Treloar, Richard

Abstract

Offshore wind energy is recognized as an important source of renewable energy and has experienced rapid growth in recent years especially in north-western European countries. In this paper, the efficiency of 71 offshore wind farms across five north-western European countries is assessed using the Data Envelopment Analysis (DEA) Method. The number of turbines, cost, distance to shore, and area of the wind farms are selected as the inputs and the connectivity to population centres, the produced electricity and the water depth are considered as the outputs. The results show that the average CCR efficiency score of all offshore wind farms considered in this study is 87%, and the relative median efficiency of offshore wind farms in different countries is not statistically different. This study offers a practical and holistic performance assessment to the offshore wind stakeholders and policy makers via including economic, environmental, technical and social inputs and outputs in the analysis.

Suggested Citation

  • Akbari, Negar & Jones, Dylan & Treloar, Richard, 2020. "A cross-European efficiency assessment of offshore wind farms: A DEA approach," Renewable Energy, Elsevier, vol. 151(C), pages 1186-1195.
  • Handle: RePEc:eee:renene:v:151:y:2020:i:c:p:1186-1195
    DOI: 10.1016/j.renene.2019.11.130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119318245
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.11.130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. San Cristóbal, José Ramón, 2011. "A multi criteria data envelopment analysis model to evaluate the efficiency of the Renewable Energy technologies," Renewable Energy, Elsevier, vol. 36(10), pages 2742-2746.
    2. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
    3. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    4. Chandra Ade Irawan & Negar Akbari & Dylan F. Jones & David Menachof, 2018. "A combined supply chain optimisation model for the installation phase of offshore wind projects," International Journal of Production Research, Taylor & Francis Journals, vol. 56(3), pages 1189-1207, February.
    5. Joe Zhu, 2014. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Quantitative Models for Performance Evaluation and Benchmarking, edition 3, chapter 1, pages 1-9, Springer.
    6. Li, Jiale & Yu, Xiong (Bill), 2018. "Onshore and offshore wind energy potential assessment near Lake Erie shoreline: A spatial and temporal analysis," Energy, Elsevier, vol. 147(C), pages 1092-1107.
    7. Ederer, Nikolaus, 2015. "Evaluating capital and operating cost efficiency of offshore wind farms: A DEA approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1034-1046.
    8. Igwemezie, Victor & Mehmanparast, Ali & Kolios, Athanasios, 2019. "Current trend in offshore wind energy sector and material requirements for fatigue resistance improvement in large wind turbine support structures – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 181-196.
    9. Kim, Kyung-Taek & Lee, Deok Joo & Park, Sung-Joon & Zhang, Yanshuai & Sultanov, Azamat, 2015. "Measuring the efficiency of the investment for renewable energy in Korea using data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 694-702.
    10. Cook, Wade D. & Tone, Kaoru & Zhu, Joe, 2014. "Data envelopment analysis: Prior to choosing a model," Omega, Elsevier, vol. 44(C), pages 1-4.
    11. Jebali, Eya & Essid, Hédi & Khraief, Naceur, 2017. "The analysis of energy efficiency of the Mediterranean countries: A two-stage double bootstrap DEA approach," Energy, Elsevier, vol. 134(C), pages 991-1000.
    12. Seiford, Lawrence M. & Thrall, Robert M., 1990. "Recent developments in DEA : The mathematical programming approach to frontier analysis," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 7-38.
    13. Golany, B & Roll, Y, 1989. "An application procedure for DEA," Omega, Elsevier, vol. 17(3), pages 237-250.
    14. Azadeh, Ali & Rahimi-Golkhandan, Armin & Moghaddam, Mohsen, 2014. "Location optimization of wind power generation–transmission systems under uncertainty using hierarchical fuzzy DEA: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 877-885.
    15. Song, Ma-Lin & Zhang, Lin-Ling & Liu, Wei & Fisher, Ron, 2013. "Bootstrap-DEA analysis of BRICS’ energy efficiency based on small sample data," Applied Energy, Elsevier, vol. 112(C), pages 1049-1055.
    16. Dylan F. Jones & Graham Wall, 2016. "An extended goal programming model for site selection in the offshore wind farm sector," Annals of Operations Research, Springer, vol. 245(1), pages 121-135, October.
    17. Halkos, George E. & Tzeremes, Nickolaos G., 2012. "Analyzing the Greek renewable energy sector: A Data Envelopment Analysis approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2884-2893.
    18. Vieira, M. & Snyder, B. & Henriques, E. & Reis, L., 2019. "European offshore wind capital cost trends up to 2020," Energy Policy, Elsevier, vol. 129(C), pages 1364-1371.
    19. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    20. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    21. Stallard, T. & Rothschild, R. & Aggidis, G.A., 2008. "A comparative approach to the economic modelling of a large-scale wave power scheme," European Journal of Operational Research, Elsevier, vol. 185(2), pages 884-898, March.
    22. Iglesias, Guillermo & Castellanos, Pablo & Seijas, Amparo, 2010. "Measurement of productive efficiency with frontier methods: A case study for wind farms," Energy Economics, Elsevier, vol. 32(5), pages 1199-1208, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xia & Xu, Li & Cai, Jingjing & Peng, Cheng & Bian, Xiaoyan, 2024. "Offshore wind turbine selection with multi-criteria decision-making techniques involving D numbers and squeeze adversarial interpretive structural modeling method," Applied Energy, Elsevier, vol. 368(C).
    2. Nakamoto, Yuya & Eguchi, Shogo, 2024. "How do seasonal and technical factors affect generation efficiency of photovoltaic power plants?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    3. Ibrahim Yilmaz, 2023. "A Hybrid DEA–Fuzzy COPRAS Approach to the Evaluation of Renewable Energy: A Case of Wind Farms in Turkey," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
    4. Alday, Matias & Lavidas, George, 2024. "Assessing the Tidal Stream Resource for energy extraction in The Netherlands," Renewable Energy, Elsevier, vol. 220(C).
    5. Nakamoto, Yuya & Eguchi, Shogo & Takayabu, Hirotaka, 2024. "Efficiency and benchmarks for photovoltaic power generation amid uncertain conditions," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    6. Benini, Giacomo & Cattani, Gilles, 2022. "Measuring the long run technical efficiency of offshore wind farms," Applied Energy, Elsevier, vol. 308(C).
    7. Zhou, Anhua & Li, Jun, 2021. "Investigate the impact of market reforms on the improvement of manufacturing energy efficiency under China’s provincial-level data," Energy, Elsevier, vol. 228(C).
    8. Tomasz Laskowicz, 2021. "The Perception of Polish Business Stakeholders of the Local Economic Impact of Maritime Spatial Planning Promoting the Development of Offshore Wind Energy," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    9. Abramic, A. & García Mendoza, A. & Haroun, R., 2021. "Introducing offshore wind energy in the sea space: Canary Islands case study developed under Maritime Spatial Planning principles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Krzysztof Wrobel & Krzysztof Tomczewski & Artur Sliwinski & Andrzej Tomczewski, 2021. "Optimization of a Small Wind Power Plant for Annual Wind Speed Distribution," Energies, MDPI, vol. 14(6), pages 1-18, March.
    11. Yu, Weihua & Peng, Yiwen & Yao, Xin, 2022. "The effects of China's supporting policy for resource-exhausted cities on local energy efficiency: An empirical study based on 284 cities in China," Energy Economics, Elsevier, vol. 112(C).
    12. Dario Maradin & Bojana Olgić Draženović & Saša Čegar, 2023. "The Efficiency of Offshore Wind Energy Companies in the European Countries: A DEA Approach," Energies, MDPI, vol. 16(9), pages 1-16, April.
    13. Bartłomiej Kizielewicz & Jarosław Wątróbski & Wojciech Sałabun, 2020. "Identification of Relevant Criteria Set in the MCDA Process—Wind Farm Location Case Study," Energies, MDPI, vol. 13(24), pages 1-40, December.
    14. Han, Yongming & Lou, Xiaoyi & Feng, Mingfei & Geng, Zhiqiang & Chen, Liangchao & Ping, Weiying & Lu, Gang, 2022. "Energy consumption analysis and saving of buildings based on static and dynamic input-output models," Energy, Elsevier, vol. 239(PC).
    15. Andréa Camila dos Santos Martins & Antonio Roberto Balbo & Dylan Jones & Leonardo Nepomuceno & Edilaine Martins Soler & Edméa Cássia Baptista, 2020. "A Hybrid Multi-Criteria Methodology for Solving the Sustainable Dispatch Problem," Sustainability, MDPI, vol. 12(17), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    3. Andreas Eder & Bernhard Mahlberg & Bernhard Stürmer, 2021. "Measuring and explaining productivity growth of renewable energy producers: An empirical study of Austrian biogas plants," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 48(1), pages 37-63, February.
    4. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    5. Vincent Charles & Ioannis E. Tsolas & Tatiana Gherman, 2018. "Satisficing data envelopment analysis: a Bayesian approach for peer mining in the banking sector," Annals of Operations Research, Springer, vol. 269(1), pages 81-102, October.
    6. Sarmento, Joaquim Miranda & Renneboog, Luc & Verga-Matos, Pedro, 2017. "Measuring highway efficiency : A DEA approach and the Malquist index," Other publications TiSEM 23264815-321e-45a3-83ee-9, Tilburg University, School of Economics and Management.
    7. Halkos, George & Petrou, Kleoniki Natalia, 2018. "Assessment of national waste generation in EU Member States’ efficiency," MPRA Paper 84590, University Library of Munich, Germany.
    8. Hisham Alidrisi & Mehmet Emin Aydin & Abdullah Omer Bafail & Reda Abdulal & Shoukath Ali Karuvatt, 2019. "Monitoring the Performance of Petrochemical Organizations in Saudi Arabia Using Data Envelopment Analysis," Mathematics, MDPI, vol. 7(6), pages 1-16, June.
    9. Visani, Franco & Boccali, Filippo, 2020. "Purchasing price assessment of leverage items: A Data Envelopment Analysis approach," International Journal of Production Economics, Elsevier, vol. 223(C).
    10. Vladimír Holý, 2022. "The impact of operating environment on efficiency of public libraries," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(1), pages 395-414, March.
    11. Toloo, Mehdi & Hančlová, Jana, 2020. "Multi-valued measures in DEA in the presence of undesirable outputs," Omega, Elsevier, vol. 94(C).
    12. Dyckhoff, Harald & Souren, Rainer, 2022. "Integrating multiple criteria decision analysis and production theory for performance evaluation: Framework and review," European Journal of Operational Research, Elsevier, vol. 297(3), pages 795-816.
    13. Kottas, Angelos T. & Madas, Michael A., 2018. "Comparative efficiency analysis of major international airlines using Data Envelopment Analysis: Exploring effects of alliance membership and other operational efficiency determinants," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 1-17.
    14. Papież, Monika & Śmiech, Sławomir & Frodyma, Katarzyna, 2019. "Factors affecting the efficiency of wind power in the European Union countries," Energy Policy, Elsevier, vol. 132(C), pages 965-977.
    15. Feng, Chenpeng & Chu, Feng & Ding, Jingjing & Bi, Gongbing & Liang, Liang, 2015. "Carbon Emissions Abatement (CEA) allocation and compensation schemes based on DEA," Omega, Elsevier, vol. 53(C), pages 78-89.
    16. Nakamoto, Yuya & Eguchi, Shogo & Takayabu, Hirotaka, 2024. "Efficiency and benchmarks for photovoltaic power generation amid uncertain conditions," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    17. Shuangjie Li & Hongyu Diao & Liming Wang & Chunqi Li, 2021. "Energy Efficiency Measurement: A VO TFEE Approach and Its Application," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    18. Wen-Min Lu & Qian Long Kweh & Kai-Chu Yang, 2022. "Multiplicative efficiency aggregation to evaluate Taiwanese local auditing institutions performance," Annals of Operations Research, Springer, vol. 315(2), pages 1243-1262, August.
    19. Ikram Ullah Khan & Sadaqat Ali & Habib Nawaz Khan, 2018. "Market Concentration, Risk-taking, and Efficiency of Commercial Banks in Pakistan: An Application of the Two-Stage Double Bootstrap DEA," Business & Economic Review, Institute of Management Sciences, Peshawar, Pakistan, vol. 10(2), pages 65-96, June.
    20. Victor V. Podinovski & Tatiana Bouzdine-Chameeva, 2021. "Optimal solutions of multiplier DEA models," Journal of Productivity Analysis, Springer, vol. 56(1), pages 45-68, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:151:y:2020:i:c:p:1186-1195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.