IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p11267-d1197732.html
   My bibliography  Save this article

A Hybrid DEA–Fuzzy COPRAS Approach to the Evaluation of Renewable Energy: A Case of Wind Farms in Turkey

Author

Listed:
  • Ibrahim Yilmaz

    (Department of Industrial Engineering, School of Engineering and Natural Sciences, Ankara Yıldırım Beyazıt University (AYBU), Ankara 06010, Turkey)

Abstract

The production of renewable energy is becoming one of the most important issues for communities due to the increasing energy demand. The purpose of this paper is to develop a systematized, sustainability-focused evaluation framework for determining the efficiency of wind farms in Turkey. The environmental impact and long-term viability of wind farms are evaluated using an evaluation framework centered on sustainability. The evaluation of their sustainability involves analyzing their energy production, environmental impacts and economic viability. In this study, DEA–Fuzzy COPRAS aims to evaluate the efficiency of 11 wind power plants located in Turkey in the Marmara Region. As inputs, the number of wind turbines, investment cost and distance from the grid are selected. As output, electricity is produced, and daily production time is considered. The proposed DEA–Fuzzy COPRAS aims to eliminate the disadvantages of the conventional methods and to be able to make better decisions regarding the weight value under uncertain conditions. The main advantages of the proposed DEA–Fuzzy COPRAS include a more accurate evaluation of efficiency and the ability to consider multiple criteria simultaneously. Additionally, the proposed DEA–Fuzzy COPRAS considers uncertainty in the inputs and outputs of wind energy production. The results of the proposed work are validated by comparing them with those obtained from a sensitivity analysis of the criteria. Therefore, decision makers can evaluate the efficiency of wind power plants accurately under an imprecise environment. Wind power plant managers or investors and other renewable energy projects can benefit from the proposed method’s implementation by allowing governments and stakeholders to save money and make better use of resources during the planning phase.

Suggested Citation

  • Ibrahim Yilmaz, 2023. "A Hybrid DEA–Fuzzy COPRAS Approach to the Evaluation of Renewable Energy: A Case of Wind Farms in Turkey," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11267-:d:1197732
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/11267/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/11267/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Azadeh, A. & Sheikhalishahi, M. & Asadzadeh, S.M., 2011. "A flexible neural network-fuzzy data envelopment analysis approach for location optimization of solar plants with uncertainty and complexity," Renewable Energy, Elsevier, vol. 36(12), pages 3394-3401.
    2. Ederer, Nikolaus, 2015. "The market value and impact of offshore wind on the electricity spot market: Evidence from Germany," Applied Energy, Elsevier, vol. 154(C), pages 805-814.
    3. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    4. Tao Xu & Jianxin You & Hui Li & Luning Shao, 2020. "Energy Efficiency Evaluation Based on Data Envelopment Analysis: A Literature Review," Energies, MDPI, vol. 13(14), pages 1-20, July.
    5. Papież, Monika & Śmiech, Sławomir & Frodyma, Katarzyna, 2019. "Factors affecting the efficiency of wind power in the European Union countries," Energy Policy, Elsevier, vol. 132(C), pages 965-977.
    6. Li, Jiaxin & Wang, Zihan & Cheng, Xin & Shuai, Jing & Shuai, Chuanmin & Liu, Jing, 2020. "Has solar PV achieved the national poverty alleviation goals? Empirical evidence from the performances of 52 villages in rural China," Energy, Elsevier, vol. 201(C).
    7. Akbari, Negar & Jones, Dylan & Treloar, Richard, 2020. "A cross-European efficiency assessment of offshore wind farms: A DEA approach," Renewable Energy, Elsevier, vol. 151(C), pages 1186-1195.
    8. Min-Chun Yu & Min-Hong Su, 2017. "Using Fuzzy DEA for Green Suppliers Selection Considering Carbon Footprints," Sustainability, MDPI, vol. 9(4), pages 1-11, March.
    9. Iribarren, Diego & Martín-Gamboa, Mario & Dufour, Javier, 2013. "Environmental benchmarking of wind farms according to their operational performance," Energy, Elsevier, vol. 61(C), pages 589-597.
    10. Imane Tronnebati & Manal El Yadari & Fouad Jawab, 2022. "A Review of Green Supplier Evaluation and Selection Issues Using MCDM, MP and AI Models," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    11. Mohamed Abdel-Basset & Abduallah Gamal & Ripon K. Chakrabortty & Michael Ryan & Nissreen El-Saber, 2021. "A Comprehensive Framework for Evaluating Sustainable Green Building Indicators under an Uncertain Environment," Sustainability, MDPI, vol. 13(11), pages 1-25, June.
    12. Iglesias, Guillermo & Castellanos, Pablo & Seijas, Amparo, 2010. "Measurement of productive efficiency with frontier methods: A case study for wind farms," Energy Economics, Elsevier, vol. 32(5), pages 1199-1208, September.
    13. Zhao, Jin & Patwary, Ataul Karim & Qayyum, Abdul & Alharthi, Majed & Bashir, Furrukh & Mohsin, Muhammad & Hanif, Imran & Abbas, Qaiser, 2022. "The determinants of renewable energy sources for the fueling of green and sustainable economy," Energy, Elsevier, vol. 238(PC).
    14. Kaffash, Sepideh & Azizi, Roza & Huang, Ying & Zhu, Joe, 2020. "A survey of data envelopment analysis applications in the insurance industry 1993–2018," European Journal of Operational Research, Elsevier, vol. 284(3), pages 801-813.
    15. Dario Maradin & Bojana Olgić Draženović & Saša Čegar, 2023. "The Efficiency of Offshore Wind Energy Companies in the European Countries: A DEA Approach," Energies, MDPI, vol. 16(9), pages 1-16, April.
    16. Iribarren, Diego & Vázquez-Rowe, Ian & Rugani, Benedetto & Benetto, Enrico, 2014. "On the feasibility of using emergy analysis as a source of benchmarking criteria through data envelopment analysis: A case study for wind energy," Energy, Elsevier, vol. 67(C), pages 527-537.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Hossein Haghighi & Maryam Ashrafi, 2024. "A novel framework for risk management of software projects by integrating a new COPRAS method under cloud model and machine learning algorithms," Annals of Operations Research, Springer, vol. 338(1), pages 675-708, July.
    2. Jerome G. Gacu & Junrey D. Garcia & Eddie G. Fetalvero & Merian P. Catajay-Mani & Cris Edward F. Monjardin & Christopher Power, 2024. "A Comprehensive Resource Assessment for Wind Power Generation on the Rural Island of Sibuyan, Philippines," Energies, MDPI, vol. 17(9), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nakamoto, Yuya & Eguchi, Shogo & Takayabu, Hirotaka, 2024. "Efficiency and benchmarks for photovoltaic power generation amid uncertain conditions," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    2. Ioannis E. Tsolas, 2020. "Benchmarking Wind Farm Projects by Means of Series Two-Stage DEA," Clean Technol., MDPI, vol. 2(3), pages 1-12, September.
    3. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    4. Ederer, Nikolaus, 2015. "Evaluating capital and operating cost efficiency of offshore wind farms: A DEA approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1034-1046.
    5. Ãœmit SaÄŸlam, 2019. "The effects of electricity prices on productive efficiency of states' wind power performances in the United States," Economics Bulletin, AccessEcon, vol. 39(2), pages 866-875.
    6. Zhang, Zumeng & Ding, Liping & Wang, Chaofan & Dai, Qiyao & Shi, Yin & Zhao, Yujia & Zhu, Yuxuan, 2022. "Do operation and maintenance contracts help photovoltaic poverty alleviation power stations perform better?," Energy, Elsevier, vol. 259(C).
    7. Xiongfeng Pan & Jing Zhang & Changyu Li & Xianyou Pan & Jinbo Song, 2019. "Analysis of China’s regional wind power generation efficiency and its influencing factors," Energy & Environment, , vol. 30(2), pages 254-271, March.
    8. Dario Maradin & Bojana Olgić Draženović & Saša Čegar, 2023. "The Efficiency of Offshore Wind Energy Companies in the European Countries: A DEA Approach," Energies, MDPI, vol. 16(9), pages 1-16, April.
    9. Nakamoto, Yuya & Eguchi, Shogo, 2024. "How do seasonal and technical factors affect generation efficiency of photovoltaic power plants?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    10. Mario Martín-Gamboa & Diego Iribarren, 2016. "Dynamic Ecocentric Assessment Combining Emergy and Data Envelopment Analysis: Application to Wind Farms," Resources, MDPI, vol. 5(1), pages 1-11, January.
    11. Xiaoyan Sun & Wenwei Lian & Hongmei Duan & Anjian Wang, 2021. "Factors Affecting Wind Power Efficiency: Evidence from Provincial-Level Data in China," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    12. Pieralli, Simone & Ritter, Matthias & Odening, Martin, 2015. "Efficiency of wind power production and its determinants," Energy, Elsevier, vol. 90(P1), pages 429-438.
    13. Kaab, Ali & Sharifi, Mohammad & Mobli, Hossein & Nabavi-Pelesaraei, Ashkan & Chau, Kwok-wing, 2019. "Use of optimization techniques for energy use efficiency and environmental life cycle assessment modification in sugarcane production," Energy, Elsevier, vol. 181(C), pages 1298-1320.
    14. Zurano-Cervelló, Patricia & Pozo, Carlos & Mateo-Sanz, Josep María & Jiménez, Laureano & Guillén-Gosálbez, Gonzalo, 2019. "Sustainability efficiency assessment of the electricity mix of the 28 EU member countries combining data envelopment analysis and optimized projections," Energy Policy, Elsevier, vol. 134(C).
    15. Benini, Giacomo & Cattani, Gilles, 2022. "Measuring the long run technical efficiency of offshore wind farms," Applied Energy, Elsevier, vol. 308(C).
    16. Santos, Marllen & González, Mario, 2019. "Factors that influence the performance of wind farms," Renewable Energy, Elsevier, vol. 135(C), pages 643-651.
    17. Sinuany-Stern, Zilla, 2023. "Foundations of operations research: From linear programming to data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1069-1080.
    18. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    19. Zapata, Sebastian & Castaneda, Monica & Aristizabal, Andres J. & Dyner, Isaac, 2022. "Renewables for supporting supply adequacy in Colombia," Energy, Elsevier, vol. 239(PC).
    20. Li, Xia & Xu, Li & Cai, Jingjing & Peng, Cheng & Bian, Xiaoyan, 2024. "Offshore wind turbine selection with multi-criteria decision-making techniques involving D numbers and squeeze adversarial interpretive structural modeling method," Applied Energy, Elsevier, vol. 368(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11267-:d:1197732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.