IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p6155-d1538245.html
   My bibliography  Save this article

Green Port Industry to Support the Offshore Wind Sector: A Proposal Framework

Author

Listed:
  • Monalisa Godeiro

    (CREATION Research Group in Renewable Energies and Power-to-X, Graduate Program in Production Engineering (PEP), Federal University of Rio Grande do Norte (UFRN), Lagoa Nova University Campus, Natal 59078-900, Brazil)

  • Mario González

    (CREATION Research Group in Renewable Energies and Power-to-X, Graduate Program in Production Engineering (PEP), Federal University of Rio Grande do Norte (UFRN), Lagoa Nova University Campus, Natal 59078-900, Brazil)

  • Dylan Jones

    (Centre for Operational Research and Logistics, University of Portsmouth, Portland Building, Portland Street, Portsmouth PO1 3AH, UK)

  • Negar Akbari

    (Centre for Operational Research and Logistics, University of Portsmouth, Portland Building, Portland Street, Portsmouth PO1 3AH, UK)

  • Gabriela Nascimento

    (CREATION Research Group in Renewable Energies and Power-to-X, Graduate Program in Production Engineering (PEP), Federal University of Rio Grande do Norte (UFRN), Lagoa Nova University Campus, Natal 59078-900, Brazil)

  • David Melo

    (CREATION Research Group in Renewable Energies and Power-to-X, Graduate Program in Production Engineering (PEP), Federal University of Rio Grande do Norte (UFRN), Lagoa Nova University Campus, Natal 59078-900, Brazil)

  • Rafael Vasconcelos

    (CREATION Research Group in Renewable Energies and Power-to-X, Graduate Program in Production Engineering (PEP), Federal University of Rio Grande do Norte (UFRN), Lagoa Nova University Campus, Natal 59078-900, Brazil)

  • Andressa Santiso

    (CREATION Research Group in Renewable Energies and Power-to-X, Graduate Program in Production Engineering (PEP), Federal University of Rio Grande do Norte (UFRN), Lagoa Nova University Campus, Natal 59078-900, Brazil)

  • Luana Nogueira

    (CREATION Research Group in Renewable Energies and Power-to-X, Graduate Program in Production Engineering (PEP), Federal University of Rio Grande do Norte (UFRN), Lagoa Nova University Campus, Natal 59078-900, Brazil)

  • Mariana Almeida

    (CREATION Research Group in Renewable Energies and Power-to-X, Graduate Program in Production Engineering (PEP), Federal University of Rio Grande do Norte (UFRN), Lagoa Nova University Campus, Natal 59078-900, Brazil)

  • José Toledo

    (Quality Study and Research Group (GEPEQ), Graduate Program in Production Engineering, Federal University of São Carlos (UFSCAR), University City, São Carlos 13565-905, Brazil)

Abstract

In recent years, offshore wind power has become increasingly relevant as a key alternative for contributing to the global economy’s decarbonization. Also, the accelerated technological development of the offshore wind turbine influences the increase in size and weight of its main components. This requires an appropriate port infrastructure to support the installation, operation, and maintenance and future decommissioning of offshore wind farms, and especially to serve as an area for manufacturing these components, addressing logistical challenges associated with land transport. This research aims to identify the factors that characterize a suitable port to support the offshore wind industry, also bringing the new green port industry concept. A systematic literature review was conducted via analyses of 126 documents, and a survey procedure was applied to validate the proposed model. As a result, a characterization model was proposed that includes 71 factors classified into 6 dimensions: physical characteristics, port layout, connectivity, port operation, port–farm performance optimization, and governance for sustainability, which is the main novelty of this study. The results contribute to the advancement of the offshore wind energy sector and can provide significant benefits for regional development and local communities with offshore wind potential.

Suggested Citation

  • Monalisa Godeiro & Mario González & Dylan Jones & Negar Akbari & Gabriela Nascimento & David Melo & Rafael Vasconcelos & Andressa Santiso & Luana Nogueira & Mariana Almeida & José Toledo, 2024. "Green Port Industry to Support the Offshore Wind Sector: A Proposal Framework," Energies, MDPI, vol. 17(23), pages 1-26, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6155-:d:1538245
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/6155/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/6155/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Irawan, Chandra Ade & Song, Xiang & Jones, Dylan & Akbari, Negar, 2017. "Layout optimisation for an installation port of an offshore wind farm," European Journal of Operational Research, Elsevier, vol. 259(1), pages 67-83.
    2. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2018. "A lifecycle techno-economic model of offshore wind energy for different entry and exit instances," Applied Energy, Elsevier, vol. 221(C), pages 406-424.
    3. Gutierrez-Romero, José E. & Esteve-Pérez, Jerónimo & Zamora, Blas, 2019. "Implementing Onshore Power Supply from renewable energy sources for requirements of ships at berth," Applied Energy, Elsevier, vol. 255(C).
    4. Kaiser, Mark J. & Snyder, Brian, 2012. "Modeling the decommissioning cost of offshore wind development on the U.S. Outer Continental Shelf," Marine Policy, Elsevier, vol. 36(1), pages 153-164, January.
    5. Sarker, Bhaba R. & Faiz, Tasnim Ibn, 2017. "Minimizing transportation and installation costs for turbines in offshore wind farms," Renewable Energy, Elsevier, vol. 101(C), pages 667-679.
    6. Acciaro, Michele & Ghiara, Hilda & Cusano, Maria Inés, 2014. "Energy management in seaports: A new role for port authorities," Energy Policy, Elsevier, vol. 71(C), pages 4-12.
    7. Snyder, Brian & Kaiser, Mark J., 2009. "Ecological and economic cost-benefit analysis of offshore wind energy," Renewable Energy, Elsevier, vol. 34(6), pages 1567-1578.
    8. Ursavas, Evrim, 2017. "A benders decomposition approach for solving the offshore wind farm installation planning at the North Sea," European Journal of Operational Research, Elsevier, vol. 258(2), pages 703-714.
    9. Snyder, Brian & Kaiser, Mark J., 2009. "A comparison of offshore wind power development in europe and the U.S.: Patterns and drivers of development," Applied Energy, Elsevier, vol. 86(10), pages 1845-1856, October.
    10. Laura Castro-Santos & Elson Martins & C. Guedes Soares, 2016. "Methodology to Calculate the Costs of a Floating Offshore Renewable Energy Farm," Energies, MDPI, vol. 9(5), pages 1-27, April.
    11. Ahsan, Dewan & Pedersen, Søren, 2018. "The influence of stakeholder groups in operation and maintenance services of offshore wind farms: Lesson from Denmark," Renewable Energy, Elsevier, vol. 125(C), pages 819-828.
    12. Akbari, Negar & Jones, Dylan & Treloar, Richard, 2020. "A cross-European efficiency assessment of offshore wind farms: A DEA approach," Renewable Energy, Elsevier, vol. 151(C), pages 1186-1195.
    13. Topham, Eva & McMillan, David, 2017. "Sustainable decommissioning of an offshore wind farm," Renewable Energy, Elsevier, vol. 102(PB), pages 470-480.
    14. Chandra Ade Irawan & Graham Wall & Dylan Jones, 2019. "An optimisation model for scheduling the decommissioning of an offshore wind farm," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 513-548, June.
    15. Barlow, Euan & Tezcaner Öztürk, Diclehan & Revie, Matthew & Akartunalı, Kerem & Day, Alexander H. & Boulougouris, Evangelos, 2018. "A mixed-method optimisation and simulation framework for supporting logistical decisions during offshore wind farm installations," European Journal of Operational Research, Elsevier, vol. 264(3), pages 894-906.
    16. González, Mario Orestes Aguirre & Santiso, Andressa Medeiros & Melo, David Cassimiro de & Vasconcelos, Rafael Monteiro de, 2020. "Regulation for offshore wind power development in Brazil," Energy Policy, Elsevier, vol. 145(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anne P. M. Velenturf, 2021. "A Framework and Baseline for the Integration of a Sustainable Circular Economy in Offshore Wind," Energies, MDPI, vol. 14(17), pages 1-41, September.
    2. Tjaberings, Jorick & Fazi, Stefano & Ursavas, Evrim, 2022. "Evaluating operational strategies for the installation of offshore wind turbine substructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    3. Lerche, J. & Lorentzen, S. & Enevoldsen, P. & Neve, H.H., 2022. "The impact of COVID -19 on offshore wind project productivity – A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Judge, Frances & McAuliffe, Fiona Devoy & Sperstad, Iver Bakken & Chester, Rachel & Flannery, Brian & Lynch, Katie & Murphy, Jimmy, 2019. "A lifecycle financial analysis model for offshore wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 370-383.
    5. Mario O. A. González & Gabriela Nascimento & Dylan Jones & Negar Akbari & Andressa Santiso & David Melo & Rafael Vasconcelos & Monalisa Godeiro & Luana Nogueira & Mariana Almeida & Pedro Oprime, 2024. "Logistic Decisions in the Installation of Offshore Wind Farms: A Conceptual Framework," Energies, MDPI, vol. 17(23), pages 1-21, November.
    6. Amorosi, Lavinia & Fischetti, Martina & Paradiso, Rosario & Roberti, Roberto, 2024. "Optimization models for the installation planning of offshore wind farms," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1182-1196.
    7. Daniel Rippel & Fatemeh Abasian Foroushani & Michael Lütjen & Michael Freitag, 2021. "A Crew Scheduling Model to Incrementally Optimize Workforce Assignments for Offshore Wind Farm Constructions," Energies, MDPI, vol. 14(21), pages 1-21, October.
    8. Maienza, C. & Avossa, A.M. & Ricciardelli, F. & Coiro, D. & Troise, G. & Georgakis, C.T., 2020. "A life cycle cost model for floating offshore wind farms," Applied Energy, Elsevier, vol. 266(C).
    9. C, O. Mauricio Hernandez & Shadman, Milad & Amiri, Mojtaba Maali & Silva, Corbiniano & Estefen, Segen F. & La Rovere, Emilio, 2021. "Environmental impacts of offshore wind installation, operation and maintenance, and decommissioning activities: A case study of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Chandra Ade Irawan & Graham Wall & Dylan Jones, 2019. "An optimisation model for scheduling the decommissioning of an offshore wind farm," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 513-548, June.
    11. Devoy McAuliffe, Fiona & Judge, Frances M. & Murphy, Jimmy, 2024. "Modelling the installation of next generation floating offshore wind farms," Applied Energy, Elsevier, vol. 374(C).
    12. Stålhane, Magnus & Halvorsen-Weare, Elin E. & Nonås, Lars Magne & Pantuso, Giovanni, 2019. "Optimizing vessel fleet size and mix to support maintenance operations at offshore wind farms," European Journal of Operational Research, Elsevier, vol. 276(2), pages 495-509.
    13. Wang, Jinggai & Li, Huanhuan & Yang, Zaili & Ge, Ying-En, 2024. "Shore power for reduction of shipping emission in port: A bibliometric analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    14. Ho, Lip-Wah & Lie, Tek-Tjing & Leong, Paul TM & Clear, Tony, 2018. "Developing offshore wind farm siting criteria by using an international Delphi method," Energy Policy, Elsevier, vol. 113(C), pages 53-67.
    15. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2016. "Cost assessment methodology for combined wind and wave floating offshore renewable energy systems," Renewable Energy, Elsevier, vol. 97(C), pages 866-880.
    16. Américo S. Ribeiro & Maite deCastro & Liliana Rusu & Mariana Bernardino & João M. Dias & Moncho Gomez-Gesteira, 2020. "Evaluating the Future Efficiency of Wave Energy Converters along the NW Coast of the Iberian Peninsula," Energies, MDPI, vol. 13(14), pages 1-15, July.
    17. Lin, Zi & Cevasco, Debora & Collu, Maurizio, 2020. "A methodology to develop reduced-order models to support the operation and maintenance of offshore wind turbines," Applied Energy, Elsevier, vol. 259(C).
    18. Mostafaeipour, Ali, 2010. "Feasibility study of offshore wind turbine installation in Iran compared with the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1722-1743, September.
    19. Rippel, Daniel & Jathe, Nicolas & Lütjen, Michael & Szczerbicka, Helena & Freitag, Michael, 2019. "Integrated domain model for operative offshore installation planning," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Digital Transformation in Maritime and City Logistics: Smart Solutions for Logistics. Proceedings of the Hamburg International Conference of Logistics, volume 28, pages 25-54, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    20. Benjamin Pakenham & Anna Ermakova & Ali Mehmanparast, 2021. "A Review of Life Extension Strategies for Offshore Wind Farms Using Techno-Economic Assessments," Energies, MDPI, vol. 14(7), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6155-:d:1538245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.