IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v129y2019icp1364-1371.html
   My bibliography  Save this article

European offshore wind capital cost trends up to 2020

Author

Listed:
  • Vieira, M.
  • Snyder, B.
  • Henriques, E.
  • Reis, L.

Abstract

Offshore wind capacity has increased significantly over the past decade with 16 GW installed by the end of 2017. Offshore wind technologies present an effective tool for EU countries to address their renewable production targets, as extensive areas of high winds are available offshore. However, offshore wind is not yet cost competitive in European electricity markets, and frequently requires support schemes to finance extensive capital cost requirements. Therefore, capital cost reductions are critical to make offshore wind technologies competitive in the market. Here, a benchmark tool to analyze capital expenditure trends associated with offshore wind implementation in Europe up to 2020 is provided. A database of all existing farms was developed, detailing more than 21 GW of already commissioned or consented capacity, and trends were described using multiple linear regression models. Results indicate that following a consistent rise from 2000 to 2015, capital costs have since begun to decline. The impact of several farm parameters such as turbine capacity, average farm depth or farm location on the capital expenditures have been estimated.

Suggested Citation

  • Vieira, M. & Snyder, B. & Henriques, E. & Reis, L., 2019. "European offshore wind capital cost trends up to 2020," Energy Policy, Elsevier, vol. 129(C), pages 1364-1371.
  • Handle: RePEc:eee:enepol:v:129:y:2019:i:c:p:1364-1371
    DOI: 10.1016/j.enpol.2019.03.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142151930206X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.03.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rodrigues, S. & Restrepo, C. & Kontos, E. & Teixeira Pinto, R. & Bauer, P., 2015. "Trends of offshore wind projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1114-1135.
    2. Gernaat, David E.H.J. & Van Vuuren, Detlef P. & Van Vliet, Jasper & Sullivan, Patrick & Arent, Douglas J., 2014. "Global long-term cost dynamics of offshore wind electricity generation," Energy, Elsevier, vol. 76(C), pages 663-672.
    3. Prässler, Thomas & Schaechtele, Jan, 2012. "Comparison of the financial attractiveness among prospective offshore wind parks in selected European countries," Energy Policy, Elsevier, vol. 45(C), pages 86-101.
    4. Bolinger, Mark & Wiser, Ryan, 2012. "Understanding wind turbine price trends in the U.S. over the past decade," Energy Policy, Elsevier, vol. 42(C), pages 628-641.
    5. Reichardt, Kristin & Negro, Simona O. & Rogge, Karoline S. & Hekkert, Marko P., 2016. "Analyzing interdependencies between policy mixes and technological innovation systems: The case of offshore wind in Germany," Technological Forecasting and Social Change, Elsevier, vol. 106(C), pages 11-21.
    6. Heptonstall, Philip & Gross, Robert & Greenacre, Philip & Cockerill, Tim, 2012. "The cost of offshore wind: Understanding the past and projecting the future," Energy Policy, Elsevier, vol. 41(C), pages 815-821.
    7. Tooraj Jamasb, 2007. "Technical Change Theory and Learning Curves: Patterns of Progress in Electricity Generation Technologies," The Energy Journal, , vol. 28(3), pages 51-72, July.
    8. Cassetta, Ernesto & Monarca, Umberto & Nava, Consuelo Rubina & Meleo, Linda, 2017. "Is the answer blowin' in the wind (auctions)? An assessment of the Italian support scheme," Energy Policy, Elsevier, vol. 110(C), pages 662-674.
    9. Aldersey-Williams, John & Broadbent, Ian D. & Strachan, Peter A., 2019. "Better estimates of LCOE from audited accounts – A new methodology with examples from United Kingdom offshore wind and CCGT," Energy Policy, Elsevier, vol. 128(C), pages 25-35.
    10. Kern, Florian & Smith, Adrian & Shaw, Chris & Raven, Rob & Verhees, Bram, 2014. "From laggard to leader: Explaining offshore wind developments in the UK," Energy Policy, Elsevier, vol. 69(C), pages 635-646.
    11. Dismukes, David E. & Upton, Gregory B., 2015. "Economies of scale, learning effects and offshore wind development costs," Renewable Energy, Elsevier, vol. 83(C), pages 61-66.
    12. Kaiser, Mark J. & Snyder, Brian, 2012. "Offshore wind capital cost estimation in the U.S. Outer Continental Shelf—A reference class approach," Marine Policy, Elsevier, vol. 36(5), pages 1112-1122.
    13. Florian Kern & Adrian Smith & Chris Shaw & Rob Raven & Bram Verhees, 2014. "From laggard to leader: Explaining offshore wind developments in the UK," SPRU Working Paper Series 2014-02, SPRU - Science Policy Research Unit, University of Sussex Business School.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santhakumar, Srinivasan & Smart, Gavin & Noonan, Miriam & Meerman, Hans & Faaij, André, 2022. "Technological progress observed for fixed-bottom offshore wind in the EU and UK," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    2. Martinez, A. & Iglesias, G., 2022. "Mapping of the levelised cost of energy for floating offshore wind in the European Atlantic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Hughes, Llewelyn & Longden, Thomas, 2024. "Offshore wind power in the Asia-Pacific: Expert elicitation on costs and policies," Energy Policy, Elsevier, vol. 184(C).
    4. Johnston, Barry & Foley, Aoife & Doran, John & Littler, Timothy, 2020. "Levelised cost of energy, A challenge for offshore wind," Renewable Energy, Elsevier, vol. 160(C), pages 876-885.
    5. Inna Čábelková & Wadim Strielkowski & Irina Firsova & Marina Korovushkina, 2020. "Public Acceptance of Renewable Energy Sources: a Case Study from the Czech Republic," Energies, MDPI, vol. 13(7), pages 1-15, April.
    6. Mario Vieira & Brian Snyder & Elsa Henriques & Craig White & Luis Reis, 2023. "Economic Viability of Implementing Structural Health Monitoring Systems on the Support Structures of Bottom-Fixed Offshore Wind," Energies, MDPI, vol. 16(13), pages 1-20, June.
    7. Vladimir Simankov & Pavel Buchatskiy & Semen Teploukhov & Stefan Onishchenko & Anatoliy Kazak & Petr Chetyrbok, 2023. "Review of Estimating and Predicting Models of the Wind Energy Amount," Energies, MDPI, vol. 16(16), pages 1-24, August.
    8. Philipp Beiter & Aubryn Cooperman & Eric Lantz & Tyler Stehly & Matt Shields & Ryan Wiser & Thomas Telsnig & Lena Kitzing & Volker Berkhout & Yuka Kikuchi, 2021. "Wind power costs driven by innovation and experience with further reductions on the horizon," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    9. Akbari, Negar & Jones, Dylan & Treloar, Richard, 2020. "A cross-European efficiency assessment of offshore wind farms: A DEA approach," Renewable Energy, Elsevier, vol. 151(C), pages 1186-1195.
    10. Stoknes, Per Espen & Aslaksen, Iulie & Goluke, Ulrich & Randers, Jorgen & Garnåsjordet, Per Arild, 2024. "Plausible futures for the Norwegian offshore energy sector: Business as usual, harvest or rebuild?," Energy Policy, Elsevier, vol. 184(C).
    11. Cristian Mattar & Felipe Cabello-Españon & Nicolas G. Alonso-de-Linaje, 2021. "Towards a Future Scenario for Offshore Wind Energy in Chile: Breaking the Paradigm," Sustainability, MDPI, vol. 13(13), pages 1-16, June.
    12. Akbari, Negar & Jones, Dylan & Arabikhan, Farzad, 2021. "Goal programming models with interval coefficients for the sustainable selection of marine renewable energy projects in the UK," European Journal of Operational Research, Elsevier, vol. 293(2), pages 748-760.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santhakumar, Srinivasan & Smart, Gavin & Noonan, Miriam & Meerman, Hans & Faaij, André, 2022. "Technological progress observed for fixed-bottom offshore wind in the EU and UK," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    2. Schwanitz, Valeria Jana & Wierling, August, 2016. "Offshore wind investments – Realism about cost developments is necessary," Energy, Elsevier, vol. 106(C), pages 170-181.
    3. Levi, Peter G. & Pollitt, Michael G., 2015. "Cost trajectories of low carbon electricity generation technologies in the UK: A study of cost uncertainty," Energy Policy, Elsevier, vol. 87(C), pages 48-59.
    4. Geels, Frank W. & Kern, Florian & Fuchs, Gerhard & Hinderer, Nele & Kungl, Gregor & Mylan, Josephine & Neukirch, Mario & Wassermann, Sandra, 2016. "The enactment of socio-technical transition pathways: A reformulated typology and a comparative multi-level analysis of the German and UK low-carbon electricity transitions (1990–2014)," Research Policy, Elsevier, vol. 45(4), pages 896-913.
    5. Mäkitie, Tuukka & Normann, Håkon E. & Thune, Taran M. & Sraml Gonzalez, Jakoba, 2019. "The green flings: Norwegian oil and gas industry’s engagement in offshore wind power," Energy Policy, Elsevier, vol. 127(C), pages 269-279.
    6. Geels, Frank W. & Ayoub, Martina, 2023. "A socio-technical transition perspective on positive tipping points in climate change mitigation: Analysing seven interacting feedback loops in offshore wind and electric vehicles acceleration," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    7. Andersen, Per Dannemand & Clausen, Niels-Erik & Cronin, Tom & Piirainen, Kalle A., 2018. "The North Sea Offshore Wind Service Industry: Status, perspectives and a joint action plan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2672-2683.
    8. Reichardt, Kristin & Rogge, Karoline S. & Negro, Simona O., 2017. "Unpacking policy processes for addressing systemic problems in technological innovation systems: The case of offshore wind in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1217-1226.
    9. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Santhakumar, Srinivasan & Meerman, Hans & Faaij, André, 2021. "Improving the analytical framework for quantifying technological progress in energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Kristin Reichardt & Karoline S. Rogge & Simona Negro & Marko Hekkert, 2015. "Analyzing interdependencies between policy mixes and technological innovation systems: the case of offshore wind in Germany," Innovation Studies Utrecht (ISU) working paper series 15-04, Utrecht University, Department of Innovation Studies, revised Aug 2015.
    12. Graziano, Marcello & Lecca, Patrizio & Musso, Marta, 2017. "Historic paths and future expectations: The macroeconomic impacts of the offshore wind technologies in the UK," Energy Policy, Elsevier, vol. 108(C), pages 715-730.
    13. Christoph Wolter & Henrik Klinge Jacobsen & Lorenzo Zeni & Georgios Rogdakis & Nicolaos A. Cutululis, 2020. "Overplanting in offshore wind power plants in different regulatory regimes," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(3), May.
    14. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    15. Lovering, Jessica R. & Yip, Arthur & Nordhaus, Ted, 2016. "Historical construction costs of global nuclear power reactors," Energy Policy, Elsevier, vol. 91(C), pages 371-382.
    16. Lowes, Richard & Woodman, Bridget, 2020. "Disruptive and uncertain: Policy makers’ perceptions on UK heat decarbonisation," Energy Policy, Elsevier, vol. 142(C).
    17. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    18. McMeekin, Andrew & Geels, Frank W. & Hodson, Mike, 2019. "Mapping the winds of whole system reconfiguration: Analysing low-carbon transformations across production, distribution and consumption in the UK electricity system (1990–2016)," Research Policy, Elsevier, vol. 48(5), pages 1216-1231.
    19. Stuti Haldar, 2022. "A landscape level analysis of entrepreneurship and sustainable energy transitions: Evidences from Gujarat, India," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(4), pages 489-502, August.
    20. Tyfield, David & Zuev, Dennis, 2018. "Stasis, dynamism and emergence of the e-mobility system in China: A power relational perspective," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 259-270.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:129:y:2019:i:c:p:1364-1371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.