IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v56y2021i1d10.1007_s11123-021-00610-3.html
   My bibliography  Save this article

Optimal solutions of multiplier DEA models

Author

Listed:
  • Victor V. Podinovski

    (School of Business and Economics, Loughborough University)

  • Tatiana Bouzdine-Chameeva

    (KEDGE Business School)

Abstract

Conventional models of data envelopment analysis (DEA) are based on the constant and variable returns-to-scale production technologies. Any optimal input and output weights of the multiplier DEA models based on these technologies are interpreted as being the most favorable for the decision making unit (DMU) under the assessment when the latter is benchmarked against the set of all observed DMUs. In this paper we consider a very large class of DEA models based on arbitrary polyhedral technologies, which includes almost all known convex DEA models. We highlight the fact that the conventional interpretation of the optimal input and output weights in such models is generally incorrect, which raises a question about the meaning of multiplier models. We address this question and prove that the optimal solutions of such models show the DMU under the assessment in the best light in comparison to the entire technology, but not necessarily in comparison to the set of observed DMUs. This result allows a clear and meaningful interpretation of the optimal solutions of multiplier models, including known models with a complex constraint structure whose interpretation has been problematic and left unaddressed in the existing literature.

Suggested Citation

  • Victor V. Podinovski & Tatiana Bouzdine-Chameeva, 2021. "Optimal solutions of multiplier DEA models," Journal of Productivity Analysis, Springer, vol. 56(1), pages 45-68, August.
  • Handle: RePEc:kap:jproda:v:56:y:2021:i:1:d:10.1007_s11123-021-00610-3
    DOI: 10.1007/s11123-021-00610-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11123-021-00610-3
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-021-00610-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Banker, Rajiv D. & Thrall, R. M., 1992. "Estimation of returns to scale using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 62(1), pages 74-84, October.
    2. Rolf Färe & Shawna Grosskopf & Gerald Whittaker, 2014. "Network DEA II," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 307-327, Springer.
    3. Laurens Cherchye & Bram De Rock & Bart Dierynck & Filip Roodhooft & Jeroen Sabbe, 2013. "Opening the “Black Box” of Efficiency Measurement: Input Allocation in Multioutput Settings," Operations Research, INFORMS, vol. 61(5), pages 1148-1165, October.
    4. Walter Briec & Hervé Leleu, 2003. "Dual Representations of Non-Parametric Technologies and Measurement of Technical Efficiency," Journal of Productivity Analysis, Springer, vol. 20(1), pages 71-96, July.
    5. Afriat, Sidney N, 1972. "Efficiency Estimation of Production Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 13(3), pages 568-598, October.
    6. Mehdiloo, Mahmood & Podinovski, Victor V., 2019. "Selective strong and weak disposability in efficiency analysis," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1154-1169.
    7. Zelenyuk, Valentin, 2013. "A scale elasticity measure for directional distance function and its dual: Theory and DEA estimation," European Journal of Operational Research, Elsevier, vol. 228(3), pages 592-600.
    8. Ole B. Olesen & Niels Chr. Petersen, 2015. "Facet Analysis in Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 6, pages 145-190, Springer.
    9. Cook, Wade D. & Tone, Kaoru & Zhu, Joe, 2014. "Data envelopment analysis: Prior to choosing a model," Omega, Elsevier, vol. 44(C), pages 1-4.
    10. O. B. Olesen & N. C. Petersen, 1996. "Indicators of Ill-Conditioned Data Sets and Model Misspecification in Data Envelopment Analysis: An Extended Facet Approach," Management Science, INFORMS, vol. 42(2), pages 205-219, February.
    11. Wade Cook & Moez Hababou & Hans Tuenter, 2000. "Multicomponent Efficiency Measurement and Shared Inputs in Data Envelopment Analysis: An Application to Sales and Service Performance in Bank Branches," Journal of Productivity Analysis, Springer, vol. 14(3), pages 209-224, November.
    12. Victor V. Podinovski & Robert G. Chambers & Kazim Baris Atici & Iryna D. Deineko, 2016. "Marginal Values and Returns to Scale for Nonparametric Production Frontiers," Operations Research, INFORMS, vol. 64(1), pages 236-250, February.
    13. Seiford, Lawrence M. & Thrall, Robert M., 1990. "Recent developments in DEA : The mathematical programming approach to frontier analysis," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 7-38.
    14. Victor V. Podinovski & Ole Bent Olesen & Cláudia S. Sarrico, 2018. "Nonparametric Production Technologies with Multiple Component Processes," Operations Research, INFORMS, vol. 66(1), pages 282-300, January.
    15. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    16. Pastor, Jesus T. & Aparicio, Juan & Alcaraz, Javier & Vidal, Fernando & Pastor, Diego, 2015. "An enhanced BAM for unbounded or partially bounded CRS additive models," Omega, Elsevier, vol. 56(C), pages 16-24.
    17. Podinovski, Victor V., 2001. "DEA models for the explicit maximisation of relative efficiency," European Journal of Operational Research, Elsevier, vol. 131(3), pages 572-586, June.
    18. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    19. Podinovski, Victor V., 2016. "Optimal weights in DEA models with weight restrictions," European Journal of Operational Research, Elsevier, vol. 254(3), pages 916-924.
    20. Mehdiloozad, Mahmood & Podinovski, Victor V., 2018. "Nonparametric production technologies with weakly disposable inputs," European Journal of Operational Research, Elsevier, vol. 266(1), pages 247-258.
    21. F R Førsund & L Hjalmarsson, 2004. "Calculating scale elasticity in DEA models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(10), pages 1023-1038, October.
    22. Timo Kuosmanen & Thierry Post & Timo Sipiläinen, 2004. "Shadow Price Approach to Total Factor Productivity Measurement: With an Application to Finnish Grass-Silage Production," Journal of Productivity Analysis, Springer, vol. 22(1), pages 95-121, July.
    23. Fare, Rolf & Grosskopf, Shawna & Logan, James, 1983. "The relative efficiency of Illinois electric utilities," Resources and Energy, Elsevier, vol. 5(4), pages 349-367, December.
    24. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    25. William Cooper & Jesús Pastor & Fernando Borras & Juan Aparicio & Diego Pastor, 2011. "BAM: a bounded adjusted measure of efficiency for use with bounded additive models," Journal of Productivity Analysis, Springer, vol. 35(2), pages 85-94, April.
    26. R. Allen & A. Athanassopoulos & R.G. Dyson & E. Thanassoulis, 1997. "Weights restrictions and value judgements in Data Envelopment Analysis: Evolution, development and future directions," Annals of Operations Research, Springer, vol. 73(0), pages 13-34, October.
    27. Førsund, Finn R., 2018. "Economic interpretations of DEA," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 9-15.
    28. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    29. Joe Zhu, 2014. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Quantitative Models for Performance Evaluation and Benchmarking, edition 3, chapter 1, pages 1-9, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Radojko LUKIC, 2022. "Measurement and Analysis of the Dynamics of Financial Performance and Efficiency of Trade in Serbia Based on the DEA Super-Radial Model," REVISTA DE MANAGEMENT COMPARAT INTERNATIONAL/REVIEW OF INTERNATIONAL COMPARATIVE MANAGEMENT, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 23(5), pages 630-645, December.
    2. Radojko LUKIC, 2024. "Economic Performance of the Economy of Kosovo and Metohija," Management and Economics Review, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 9(1), pages 120-137, February.
    3. Papaioannou, Grammatoula & Podinovski, Victor V., 2024. "A single-stage optimization procedure for data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1119-1128.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papaioannou, Grammatoula & Podinovski, Victor V., 2024. "A single-stage optimization procedure for data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1119-1128.
    2. Mehdiloo, Mahmood & Podinovski, Victor V., 2021. "Strong, weak and Farrell efficient frontiers of technologies satisfying different production assumptions," European Journal of Operational Research, Elsevier, vol. 294(1), pages 295-311.
    3. Mehdiloo, Mahmood & Podinovski, Victor V., 2019. "Selective strong and weak disposability in efficiency analysis," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1154-1169.
    4. Podinovski, Victor V., 2017. "Returns to scale in convex production technologies," European Journal of Operational Research, Elsevier, vol. 258(3), pages 970-982.
    5. Ole Bent Olesen & Niels Christian Petersen & Victor V. Podinovski, 2022. "Scale characteristics of variable returns-to-scale production technologies with ratio inputs and outputs," Annals of Operations Research, Springer, vol. 318(1), pages 383-423, November.
    6. Podinovski, Victor V. & Bouzdine-Chameeva, Tatiana, 2019. "Cone extensions of polyhedral production technologies," European Journal of Operational Research, Elsevier, vol. 276(2), pages 736-743.
    7. Podinovski, Victor V., 2019. "Direct estimation of marginal characteristics of nonparametric production frontiers in the presence of undesirable outputs," European Journal of Operational Research, Elsevier, vol. 279(1), pages 258-276.
    8. Papaioannou, Grammatoula & Podinovski, Victor V., 2023. "Multicomponent production technologies with restricted allocations of shared inputs and outputs," European Journal of Operational Research, Elsevier, vol. 308(1), pages 274-289.
    9. Victor V. Podinovski & Ole Bent Olesen & Cláudia S. Sarrico, 2018. "Nonparametric Production Technologies with Multiple Component Processes," Operations Research, INFORMS, vol. 66(1), pages 282-300, January.
    10. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    11. Camanho, Ana Santos & Silva, Maria Conceicao & Piran, Fabio Sartori & Lacerda, Daniel Pacheco, 2024. "A literature review of economic efficiency assessments using Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 315(1), pages 1-18.
    12. Papaioannou, Grammatoula & Podinovski, Victor V., 2023. "Production technologies with ratio inputs and outputs," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1164-1178.
    13. Victor V. Podinovski & Robert G. Chambers & Kazim Baris Atici & Iryna D. Deineko, 2016. "Marginal Values and Returns to Scale for Nonparametric Production Frontiers," Operations Research, INFORMS, vol. 64(1), pages 236-250, February.
    14. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    15. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    16. Roets, Bart & Verschelde, Marijn & Christiaens, Johan, 2018. "Multi-output efficiency and operational safety: An analysis of railway traffic control centre performance," European Journal of Operational Research, Elsevier, vol. 271(1), pages 224-237.
    17. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    18. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    19. Zelenyuk, Valentin, 2020. "Aggregation of inputs and outputs prior to Data Envelopment Analysis under big data," European Journal of Operational Research, Elsevier, vol. 282(1), pages 172-187.
    20. Cherchye, L. & Post, G.T., 2001. "Methodological Advances in Dea," ERIM Report Series Research in Management ERS-2001-53-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.

    More about this item

    Keywords

    C14; C61; C67; D24;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:56:y:2021:i:1:d:10.1007_s11123-021-00610-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.