IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v150y2020icp1057-1065.html
   My bibliography  Save this article

Preparation and thermal property analysis of a novel phase change heat storage material

Author

Listed:
  • Wu, Shaofei
  • Yan, Ting
  • Kuai, Zihan
  • Pan, Weiguo

Abstract

Hydrated salt of aluminium potassium sulfate dodecahydrate (APSD)/expanded graphite (EG) form-stable composite phase change material (PCM) has been prepared. Hydrated salt of aluminium potassium sulfate dodecahydrate used as the PCM was firstly modified by using nucleator and thickener with the aiming at solving the supercooling and phase separation. Sulfurized EG is selected as supporting matrix to overcome leakage and low thermal conductivity of MAPSD. Furthermore, hydrophilic and hydrophobic groups on the surface of the expanded graphite is oriented by carrying out titanate coupling agent, which could restrict the volatilization of crystal water and solve the poor cyclic stability problems of APSD. The thermal performance of modified APSD (MAPSD) and modified EG (MEG)/MAPSD composite PCMs are tested and analyzed by using Differential Scanning Calorimeter (DSC), Hot Disk Thermal Constant Analyzer and a small-scale experimental device. The DSC analysis showed that the melting enthalpy of form-stable composite PCM containing 80 wt% APSD and MAPSD are 473.52 and 641.75 J/g, and their corresponding melting points are 84.39 and 84.34 °C, respectively. The 100 times melt-freeze cyclic tests revealed that the mass of MAPSD decreases by 45.57%. However, the mass of MEG/MAPSD composite PCMs decreases by only 7.91% when the sample density (ρ) of 900 kg/m3 and mass fraction of MEG with 20%, which could still maintain its original shape perfectly without any change. What’s more, the effective thermal conductivity of MEG/MAPSD composite PCM (6.157 W/(m·K)) is about 11 times higher than that of pure APSD (0.55 W/(m·K)) and Agari-Uno model is used to predict the thermal conductivity of composite PCMs with different MEG contents. The average deviation is only 3.91% between experimental and predicted value. All the results indicate that the form-stable MAPSD/MEG composite PCMs can be considered as high-performance latent heat storage materials and the great potential for practical application in solar thermal utilization.

Suggested Citation

  • Wu, Shaofei & Yan, Ting & Kuai, Zihan & Pan, Weiguo, 2020. "Preparation and thermal property analysis of a novel phase change heat storage material," Renewable Energy, Elsevier, vol. 150(C), pages 1057-1065.
  • Handle: RePEc:eee:renene:v:150:y:2020:i:c:p:1057-1065
    DOI: 10.1016/j.renene.2019.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119316775
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohamed, Shamseldin A. & Al-Sulaiman, Fahad A. & Ibrahim, Nasiru I. & Zahir, Md. Hasan & Al-Ahmed, Amir & Saidur, R. & Yılbaş, B.S. & Sahin, A.Z., 2017. "A review on current status and challenges of inorganic phase change materials for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1072-1089.
    2. Zhang, Long & Zhou, Kechao & Wei, Quiping & Ma, Li & Ye, Wentao & Li, Haichao & Zhou, Bo & Yu, Zhiming & Lin, Cheng-Te & Luo, Jingting & Gan, Xueping, 2019. "Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage," Applied Energy, Elsevier, vol. 233, pages 208-219.
    3. Fu, Lulu & Wang, Qianhao & Ye, Rongda & Fang, Xiaoming & Zhang, Zhengguo, 2017. "A calcium chloride hexahydrate/expanded perlite composite with good heat storage and insulation properties for building energy conservation," Renewable Energy, Elsevier, vol. 114(PB), pages 733-743.
    4. Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
    5. Wang, Tingyu & Wang, Shuangfeng & Geng, Lixia & Fang, Yutang, 2016. "Enhancement on thermal properties of paraffin/calcium carbonate phase change microcapsules with carbon network," Applied Energy, Elsevier, vol. 179(C), pages 601-608.
    6. Xiao, X. & Zhang, P. & Li, M., 2013. "Preparation and thermal characterization of paraffin/metal foam composite phase change material," Applied Energy, Elsevier, vol. 112(C), pages 1357-1366.
    7. Safari, A. & Saidur, R. & Sulaiman, F.A. & Xu, Yan & Dong, Joe, 2017. "A review on supercooling of Phase Change Materials in thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 905-919.
    8. Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Honcová, Pavla & Sádovská, Galina & Pastvová, Jana & Koštál, Petr & Seidel, Jürgen & Sazama, Petr & Pilař, Radim, 2021. "Improvement of thermal energy accumulation by incorporation of carbon nanomaterial into magnesium chloride hexahydrate and magnesium nitrate hexahydrate," Renewable Energy, Elsevier, vol. 168(C), pages 1015-1026.
    2. Gong, Shuai & Li, Qiong & Shao, Liqun & Ding, Yuwen & Gao, Wenfeng, 2024. "Performance analysis of V-corrugated flat plate collector containing binary crystal thermal storage materials," Renewable Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Kunyang & Liu, Yushi & Yang, Yingzi, 2021. "Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties," Applied Energy, Elsevier, vol. 292(C).
    2. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Lin, Yaxue & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials," Energy, Elsevier, vol. 165(PA), pages 685-708.
    4. Zhang, Xiangguo & Li, Yuqing & Luo, Chunhuan & Pan, Chongchao, 2021. "Fabrication and properties of novel tubular carbon fiber-ionic liquids/stearic acid composite PCMs," Renewable Energy, Elsevier, vol. 177(C), pages 411-421.
    5. Yanjun Zhang & Shuli Liu & Liu Yang & Xiue Yang & Yongliang Shen & Xiaojing Han, 2020. "Experimental Study on the Strengthen Heat Transfer Performance of PCM by Active Stirring," Energies, MDPI, vol. 13(9), pages 1-16, May.
    6. Zhang, Hongyun & Wang, Lingling & Xi, Shaobo & Xie, Huaqing & Yu, Wei, 2021. "3D porous copper foam-based shape-stabilized composite phase change materials for high photothermal conversion, thermal conductivity and storage," Renewable Energy, Elsevier, vol. 175(C), pages 307-317.
    7. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    8. Nie, Binjian & Palacios, Anabel & Zou, Boyang & Liu, Jiaxu & Zhang, Tongtong & Li, Yunren, 2020. "Review on phase change materials for cold thermal energy storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    9. Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
    10. Zhao, Liang & Xing, Yuming & Liu, Xin, 2020. "Experimental investigation on the thermal management performance of heat sink using low melting point alloy as phase change material," Renewable Energy, Elsevier, vol. 146(C), pages 1578-1587.
    11. Yao, Haichen & Liu, Xianglei & Luo, Qingyang & Xu, Qiao & Tian, Yang & Ren, Tianze & Zheng, Hangbin & Gao, Ke & Dang, Chunzhuo & Xuan, Yimin & Liu, Zhan & Yang, Xiaohu & Ding, Yulong, 2022. "Experimental and numerical investigations of solar charging performances of 3D porous skeleton based latent heat storage devices," Applied Energy, Elsevier, vol. 320(C).
    12. Ewelina Radomska & Lukasz Mika & Karol Sztekler, 2020. "The Impact of Additives on the Main Properties of Phase Change Materials," Energies, MDPI, vol. 13(12), pages 1-34, June.
    13. Li, Han & Li, Jinchao & Kong, Xiangfei & Long, Hao & Yang, Hua & Yao, Chengqiang, 2020. "A novel solar thermal system combining with active phase-change material heat storage wall (STS-APHSW): Dynamic model, validation and thermal performance," Energy, Elsevier, vol. 201(C).
    14. Costa, Sol Carolina & Kenisarin, Murat, 2022. "A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    15. Xiao, Xin & Jia, Hongwei & Wen, Dongsheng & Zhao, Xudong, 2020. "Thermal performance analysis of a solar energy storage unit encapsulated with HITEC salt/copper foam/nanoparticles composite," Energy, Elsevier, vol. 192(C).
    16. Li, T.X. & Xu, J.X. & Wu, D.L. & He, F. & Wang, R.Z., 2019. "High energy-density and power-density thermal storage prototype with hydrated salt for hot water and space heating," Applied Energy, Elsevier, vol. 248(C), pages 406-414.
    17. Chen, Xue & Li, Xiaolei & Xia, Xinlin & Sun, Chuang & Liu, Rongqiang, 2021. "Thermal storage analysis of a foam-filled PCM heat exchanger subjected to fluctuating flow conditions," Energy, Elsevier, vol. 216(C).
    18. Luo, Qingyang & Liu, Xianglei & Xu, Qiao & Tian, Yang & Yao, Haichen & Wang, Jianguo & Lv, Shushan & Dang, Chunzhuo & Xuan, Yimin, 2023. "Ceramic nanoparticles enhancement of latent heat thermal energy storage properties for LiNO3/NaCl: Evaluation from material to system level," Applied Energy, Elsevier, vol. 331(C).
    19. Huanpei Zheng & Changhong Wang, 2017. "Numerical and Experimental Studies on the Heat Transfer Performance of Copper Foam Filled with Paraffin," Energies, MDPI, vol. 10(7), pages 1-13, July.
    20. Tombrink, Jonas & Bauer, Dan, 2022. "Demand-based process steam from renewable energy: Implementation and sizing of a latent heat thermal energy storage system based on the Rotating Drum Heat Exchanger," Applied Energy, Elsevier, vol. 321(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:150:y:2020:i:c:p:1057-1065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.