Author
Listed:
- Chen, Kecheng
- Sun, Xiang
- Soga, Kenichi
- Nico, Peter S.
- Dobson, Patrick F.
Abstract
Optimization of aquifer thermal energy storage (ATES) performance in a building system is an important topic for maximizing the seasonal offset between energy demand and supply and minimizing the building's primary energy consumption. To evaluate ATES performance with bidirectional operation, this study develops an analytical solution-based model to simulate the spatiotemporal thermal response in an aquifer. The model consists of three temperature response functions, similar to the G functions in borehole thermal energy storage (BTES), to estimate the transient temperature profile in the aquifer during seasonally varying injection and extraction of hot/cold water. Applying machine learning (ML) based data classification and regression techniques to the results of a series of finite element (FE) benchmark simulations of typical ATES configurations, model input parameters are linked to the subsurface thermal, hydrogeological, and ATES operational properties. Compared to the benchmark simulation results, the errors of the proposed model in estimating the annual energy storage and locating the thermally affected area are about 3 % and 1 %, respectively. The model was applied to a previous short-term case study, and the error in the transient production temperature estimation is about 1 %. The long-term heat recovery ratio estimated from the model also compares well to those calculated from the previous study and the validated numerical model. Because of its fast computation, the proposed model can be coupled with the individual building system simulation and used for preliminary ATES design, and this will allow for greater exploration of ATES operational space and, therefore, better choices of ATES operating conditions. The proposed model can also be coupled with the district heating and cooling network simulation for computationally efficient city-scale long-term ATES potential assessment.
Suggested Citation
Chen, Kecheng & Sun, Xiang & Soga, Kenichi & Nico, Peter S. & Dobson, Patrick F., 2024.
"Machine-learning-assisted long-term G functions for bidirectional aquifer thermal energy storage system operation,"
Energy, Elsevier, vol. 301(C).
Handle:
RePEc:eee:energy:v:301:y:2024:i:c:s0360544224014117
DOI: 10.1016/j.energy.2024.131638
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224014117. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.